Netty @ Apple

Massive Scale Deployment / Connectivity

This is not a contribution

Norman Maurer

e Senior Software Engineer @ Apple
e Core Developer of Netty

e Formerly worked @ Red Hat as Netty
Project Lead (internal Red Hat)

e Author of Netty in Action (Published by
Manning)

e Apache Software Foundation

e Eclipse Foundation

This is not a contribution

Massive Scal

Massive Scale

What does “Massive Scale” mean...

e Instances of Netty based Services in Production: 400,000+
e Data / Day: 10s of PetaBytes
e Requests / Second: 10s of Millions

e \ersions: 3.x (migrating to 4.x), 4.x

This is not a contribution

Part of the OSS Community

Aug 3, 2008 — Sep 16, 2015 Contributions: Comemits <

Contributions to master, ex ge commits

e Contributing back to the Community

e 250+ commits from Apple Engineers in
1 year

p trustin il e normanmaurer
G 4,044 commits e 1,591 commits 90,903 --

Scottmitch #3 i By nmittler
160 commits 5,872 -- o 90 commits

This is not a contribution

Services

Using an Apple Service?
Chances are good Netty is involved somehow.

This is not a contribution

Areas of importance

Native Transport

TCP / UDP / Domain Sockets
PooledByteBufAllocator
OpenSslEngine
ChannelPool

Build-in codecs + custom codecs for different
protocols

This is not a contribution

With Scale comes Pain

This is not a contribution

JDK NIO

Some of the pains

e Selector.selectedKeys() produces too much garbage
e NIO implementation uses synchronized everywhere!

e Not optimized for typical deployment environment
(support common denominator of all environments)

e Internal copying of heap buffers to direct buffers

This is not a contribution

JNI to the rescue

e Optimized transport for Linux only

e Supports Linux specific features
e Directly operate on pointers for buffers

e Synchronization optimized for Netty’s Thread-Model

This is not a contribution

Native Transport
epoll based high-performance transport

NIO Transport

Bootstrap bootstrap = new Bootstrap().group(
new NioEventLoopGroup());
bootstrap.channel(NioSocketChannel.class);

Native Transport

Bootstrap bootstrap = new Bootstrap().group(
new EpollEventLoopGroup());
bootstrap.channel(EpollSocketChannel.class);

e |Less GC pressure due
e Advanced features

e 5SO_REUSEPORT

e TCP CORK,

less Objects

e TCP_NOTSENT_LOWAT

e [CP FASTOPEN
e [CP INFO
e LTand ET

e Unix Domain Sockets

This is not a contribution

Buffers

JDK ByteBuffer

e Direct buffers are free'ed by GC

e Not run frequently enough

o May trigger _GC

Buffers

== expensive

e Direct buffers

(but not for free¥*)

== cheap

e Heap buffers

e Fragmentation

Buffers - Memory fragmentation

e \Waste memory

e May trigger GC due lack of coalesced free memory

Can’t insert int here as we need 4 continuous slots

This is not a contribution

Allocation times

" Unpooled Heap ™ Pooled Heap ™ Unpooled Direct B Pooled Direct

6000

4500

| |
| |

T

PooledByteBufAllocator

e Based on jemalloc paper (3.x

e ThreadlLocal caches for lock-free
allocation in most cases #808

e Synchronize per Arena that holds the
different chunks of memory

e Different size classes

https://github.com/netty/netty/pull/3288

ThreadLocal caches

e Able to enable / disable ThreadlLocal

™ No Cache

" Cache

caches

2100]0

e Fine tuning of Caches can make a big

difference

e Best effect if number of allocating

Threads are low.

https://github.com/netty/netty/pull/3288

JDK SSL Performance

Why handle SSL directly?

e Secure communication between services
e Used for HTTP2 / SPDY negotiation

e Advanced verification of Certificates

Unfortunately JDK's SSLEngine implementation is very slow :(

This is not a contribution

HTTPS Benchmark
JDK SSLEngine implementation

Response

HTTP/1.1 200 OK

Content-Length: 15

Content-Type: text/plain; charset=UTF-8
Server: Netty.io

Date: Wed, 17 Apr 2013 12:00:00 GMT

Hello, World!

Benchmark

Result

Running 2m test @ https.//xxx:8080/plaintext
16 threads and 256 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 553.70ms 81.74ms 1.43s 80.22%
Req/Sec 7.41k 595.69 8.90k 63.93%
14026376 requests in 2.00m, 1.89GB read
Socket errors: connect O, read O, write O, timeout 114
Requests/sec: 116883.21

Iransfer/sec: 16.16MB

/wrk -H 'Host: localhost' -H 'Accept: text/html,application/xhtmi+xml,application/
xml;g=0.9,7*,g=0.8"' -H 'Connection: keep-alive' -d 120 -c 256 -t 16 -s scripts/

pipeline-many.lua https.//xxx:8080/plaintext

This is not a contribution

https://xxx:8080/plaintext

™™™ ™™T™~T™"""T"™T"™m™m™m™m™™m™™™m™m™TmMmMM™MMM

HTTPS Benchmark
JDK SSLEngine implementation

154

T. 0L
53 days, 19:29:17

e Unable to fully utilize all cores
e SSLENngine API limiting in some cases

e SSLEngine.unwrap(...) can only take
one ByteBuffer as src

(W B W B SR B S Dy SR B SRy N Dy N by SN Gy SRS by SRS by S Gy NNy RSN by SN Gy SR by SN by S by SR By SNy R jy S Gy SRS gy S gy SRS g WS

This is not a contribution

JNI based SSLEngine

... to the rescue

JNI based SSLEngine

...one to rule them all

e Supports OpenSSL, LibreSSL and BoringSSL
e Based on Apache Tomcat Native

e Was part of Finagle but contributed to Netty in 2014

This is not a contribution

HTTPS Benchmark
OpenSSL SSLEngine implementation

Response

HTTP/1.1 200 OK

Content-Length: 15

Content-Type: text/plain; charset=UTF-8
Server: Netty.io

Date: Wed, 17 Apr 2013 12:00:00 GMT

Hello, World!

Benchmark

Result

Running 2m test @ https.//xxx:8080/plaintext
16 threads and 256 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 131.16ms 28.24ms 857.07/ms 96.89%
Req/Sec 31.74k 3.14k 35.75k 84.41%
60127756 requests in 2.00m, 8.12GB read
Socket errors: connect O, read O, write O, timeout 52
Requests/sec.: 501120.56

Iransfer/sec: 69.30MB

/wrk -H 'Host: localhost' -H 'Accept: text/html,application/xhtmi+xml,application/
xml;g=0.9,7*,g=0.8"' -H 'Connection: keep-alive' -d 120 -c 256 -t 16 -s scripts/

pipeline-many.lua https.//xxx:8080/plaintext

This is not a contribution

https://xxx:8080/plaintext

cLr-r-r---rmrrmmTmTmTr~mTmTrrTrT~Tsrr~srTr~rr™m™~TmT™TTTTrsrfTTTrTrTmreMemmm—mT™Mm

HTTPS Benchmark
OpenSSL SSLEngine implementation

154

35 days, 18:45:30

e All cores utilized!

e Makes use of native code provided by
OpenSSL

® Low object creation

® Drop in replacement®

W B N Dy N D R Dy R Dy R B N Dy N Dy R R R Dy R By R Dy R Dy R R N by R Gy R Dy R Ry R Gy R by R Dy R Gy R by ey R

*supported on Linux, OSX and Windows

This is not a contribution

Optimizations made

e Added client support: #7,

11,

3270,

3277,

3279

e Added support for Auth:

10,

3276

e GC-Pressure caused by heavy object creation: #8,

e Too many JNI calls: #3289

e Proper SSLSession implementation:

3288
e ALPN support #3481

9,

16,

3280, #3648

1/,

20,

3283, #3286,

e Only do priming read if there is no space in dsts buffers #3958

This is not a contribution

https://github.com/netty/netty-tcnative/pull/7
https://github.com/netty/netty-tcnative/pull/11
https://github.com/netty/netty/pull/3270
https://github.com/netty/netty/pull/3277
https://github.com/netty/netty/pull/3279
https://github.com/netty/netty-tcnative/pull/10
https://github.com/netty/netty/pull/3276
https://github.com/netty/netty-tcnative/pull/8
https://github.com/netty/netty/pull/3280
https://github.com/netty/netty/pull/3280
https://github.com/netty/netty/pull/3289
https://github.com/netty/netty-tcnative/pull/9
https://github.com/netty/netty-tcnative/pull/16
https://github.com/netty/netty-tcnative/pull/17
https://github.com/netty/netty-tcnative/pull/20
https://github.com/netty/netty/pull/3283
https://github.com/netty/netty/pull/3286
https://github.com/netty/netty/pull/3288
https://github.com/netty/netty-tcnative/pull/9
https://github.com/netty/netty-tcnative/pull/9

Thread Model

® Fasier to reason about

® |ess worry about concurrency
e Easier to maintain

e (lear execution order

Thread Model

public class ProxyHandler extends ChannelInboundHandlerAdapter {

@Override

public void channelActive(ChannelHandlerContext ctx) {
] final Channel inboundChannel = ctx.channel();
Bootstrap b = new Bootstrap();
b.group(inboundChannel.eventLoop());
ctx.channel().config().setAutoRead(false);
ChannelFuture f = b.connect(remoteHost, remotePort);
f.addListener(f -> {

if (f.isSuccess()) {
ctx.channel().config().setAutoRead(true);

Backpressure

Peer Peer?2
Slow ? e
Slow ?
Slow ? Fast

e Slow peers due slow connection
e Risk of writing too fast

e Backoff writing and reading This is not a contribution

Memory Usage

e Handling a lot of concurrent connections

e Need to safe memory to reduce heap sizes

Connection Pooling

e Having an extensible connection pool is important #3607

https://github.com/netty/netty-tcnative/pull/9

Thanks

We are hiring!

http://www.apple.com/jobs/us/

