
Netty @ Apple

Massive Scale Deployment / Connectivity

This is not a contribution

Norman Maurer

Senior Software Engineer @ Apple

Core Developer of Netty

Formerly worked @ Red Hat as Netty
Project Lead (internal Red Hat)

Author of Netty in Action (Published by
Manning)

Apache Software Foundation

Eclipse Foundation

This is not a contribution

Massive Scale

This is not a contribution

What does “Massive Scale” mean…

Massive Scale

Instances of Netty based Services in Production: 400,000+

Data / Day: 10s of PetaBytes

Requests / Second: 10s of Millions

Versions: 3.x (migrating to 4.x), 4.x

This is not a contribution

Part of the OSS Community

Contributing back to the Community

250+ commits from Apple Engineers in
1 year

This is not a contribution

Services

This is not a contribution

Using an Apple Service?
Chances are good Netty is involved somehow.

Areas of importance

This is not a contribution

Native Transport

TCP / UDP / Domain Sockets

PooledByteBufAllocator

OpenSslEngine

ChannelPool

Build-in codecs + custom codecs for different
protocols

With Scale comes Pain

This is not a contribution

JDK NIO
… some pains

This is not a contribution

Some of the pains

Selector.selectedKeys() produces too much garbage

NIO implementation uses synchronized everywhere!

Not optimized for typical deployment environment
(support common denominator of all environments)

Internal copying of heap buffers to direct buffers

This is not a contribution

JNI to the rescue

Optimized transport for Linux only

Supports Linux specific features

Directly operate on pointers for buffers

Synchronization optimized for Netty’s Thread-Model

This is not a contribution

J
N
I C/C++Java

Native Transport
epoll based high-performance transport

Less GC pressure due less Objects

Advanced features

SO_REUSEPORT

TCP_CORK,

TCP_NOTSENT_LOWAT

TCP_FASTOPEN

TCP_INFO

LT and ET

Unix Domain Sockets

Bootstrap	bootstrap	=	new	Bootstrap().group(
								new	NioEventLoopGroup());	
bootstrap.channel(NioSocketChannel.class);	

Bootstrap	bootstrap	=	new	Bootstrap().group(
								new	EpollEventLoopGroup());	
bootstrap.channel(EpollSocketChannel.class);

NIO Transport

Native Transport

This is not a contribution

Buffers

This is not a contribution

JDK ByteBuffer

Direct buffers are free’ed by GC

Not run frequently enough

May trigger GC

Hard to use due not separate indices

This is not a contribution

Buffers

Direct buffers == expensive

Heap buffers == cheap (but not for free*)

Fragmentation

This is not a contribution

*byte[] needs to be zero-out by the JVM!

Buffers - Memory fragmentation

Waste memory

May trigger GC due lack of coalesced free memory

This is not a contribution

Can’t insert int here as we need 4 continuous slots

Allocation times

This is not a contribution

N
an

oS
ec

on
ds

0

1500

3000

4500

6000

Bytes

0 256 1024 4096 16384 65536

Unpooled Heap Pooled Heap Unpooled Direct Pooled Direct

PooledByteBufAllocator

Based on jemalloc paper (3.x)

ThreadLocal caches for lock-free
allocation in most cases #808

Synchronize per Arena that holds the
different chunks of memory

Different size classes

Reduce fragmentation

ThreadLocal
Cache 2

Arena 1 Arena 2 Arena 3

Size-classes Size-classes Size-classes

Thread 2

ThreadLocal
Cache 1

Thread 1

https://github.com/netty/netty/pull/3288

Able to enable / disable ThreadLocal
caches

Fine tuning of Caches can make a big
difference

Best effect if number of allocating
Threads are low.

Using ThreadLocal + MPSC queue #3833

ThreadLocal caches

This is not a contribution

Title

Co
nt

en
tio

n
Co

un
t

0

1000

2000

3000

4000

Cache No Cache

https://github.com/netty/netty/pull/3288

JDK SSL Performance
…. it’s slow!

This is not a contribution

Why handle SSL directly?

Secure communication between services

Used for HTTP2 / SPDY negotiation

Advanced verification of Certificates

This is not a contribution

Unfortunately JDK's SSLEngine implementation is very slow :(

JDK SSLEngine implementation
HTTPS Benchmark

Running 2m test @ https://xxx:8080/plaintext
 16 threads and 256 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 553.70ms 81.74ms 1.43s 80.22%
 Req/Sec 7.41k 595.69 8.90k 63.93%
 14026376 requests in 2.00m, 1.89GB read
 Socket errors: connect 0, read 0, write 0, timeout 114
Requests/sec: 116883.21
Transfer/sec: 16.16MB

HTTP/1.1 200 OK
Content-Length: 15
Content-Type: text/plain; charset=UTF-8
Server: Netty.io
Date: Wed, 17 Apr 2013 12:00:00 GMT

Hello, World!

Response Result

./wrk -H 'Host: localhost' -H 'Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8' -H 'Connection: keep-alive' -d 120 -c 256 -t 16 -s scripts/
pipeline-many.lua https://xxx:8080/plaintext

Benchmark

This is not a contribution

https://xxx:8080/plaintext

This is not a contribution

HTTPS Benchmark
JDK SSLEngine implementation

Unable to fully utilize all cores

SSLEngine API limiting in some cases

SSLEngine.unwrap(…) can only take
one ByteBuffer as src

JNI based SSLEngine
… to the rescue

This is not a contribution

J
N
I C/C++Java

…one to rule them all

JNI based SSLEngine

Supports OpenSSL, LibreSSL and BoringSSL

Based on Apache Tomcat Native

Was part of Finagle but contributed to Netty in 2014

This is not a contribution

OpenSSL SSLEngine implementation
HTTPS Benchmark

Running 2m test @ https://xxx:8080/plaintext
 16 threads and 256 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 131.16ms 28.24ms 857.07ms 96.89%
 Req/Sec 31.74k 3.14k 35.75k 84.41%
 60127756 requests in 2.00m, 8.12GB read
 Socket errors: connect 0, read 0, write 0, timeout 52
Requests/sec: 501120.56
Transfer/sec: 69.30MB

HTTP/1.1 200 OK
Content-Length: 15
Content-Type: text/plain; charset=UTF-8
Server: Netty.io
Date: Wed, 17 Apr 2013 12:00:00 GMT

Hello, World!

Response Result

./wrk -H 'Host: localhost' -H 'Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8' -H 'Connection: keep-alive' -d 120 -c 256 -t 16 -s scripts/
pipeline-many.lua https://xxx:8080/plaintext

Benchmark

This is not a contribution

https://xxx:8080/plaintext

This is not a contribution

OpenSSL SSLEngine implementation
HTTPS Benchmark

All cores utilized!

Makes use of native code provided by
OpenSSL

Low object creation

Drop in replacement*

*supported on Linux, OSX and Windows

Optimizations made

Added client support: #7, #11, #3270, #3277, #3279

Added support for Auth: #10, #3276

GC-Pressure caused by heavy object creation: #8, #3280, #3648

Too many JNI calls: #3289

Proper SSLSession implementation: #9, #16, #17, #20, #3283, #3286,
#3288

ALPN support #3481

Only do priming read if there is no space in dsts buffers #3958

This is not a contribution

https://github.com/netty/netty-tcnative/pull/7
https://github.com/netty/netty-tcnative/pull/11
https://github.com/netty/netty/pull/3270
https://github.com/netty/netty/pull/3277
https://github.com/netty/netty/pull/3279
https://github.com/netty/netty-tcnative/pull/10
https://github.com/netty/netty/pull/3276
https://github.com/netty/netty-tcnative/pull/8
https://github.com/netty/netty/pull/3280
https://github.com/netty/netty/pull/3280
https://github.com/netty/netty/pull/3289
https://github.com/netty/netty-tcnative/pull/9
https://github.com/netty/netty-tcnative/pull/16
https://github.com/netty/netty-tcnative/pull/17
https://github.com/netty/netty-tcnative/pull/20
https://github.com/netty/netty/pull/3283
https://github.com/netty/netty/pull/3286
https://github.com/netty/netty/pull/3288
https://github.com/netty/netty-tcnative/pull/9
https://github.com/netty/netty-tcnative/pull/9

Thread Model

Easier to reason about

Less worry about concurrency

Easier to maintain

Clear execution order

Thread

Event
Loop

Channel Channel Channel

I/O I/O I/O

This is not a contribution

Thread Model
Thread

Event
Loop

Channel Channel

I/O I/O

public	class	ProxyHandler	extends	ChannelInboundHandlerAdapter	{	
		@Override	
		public	void	channelActive(ChannelHandlerContext	ctx)	{		
				final	Channel	inboundChannel	=	ctx.channel();	
				Bootstrap	b	=	new	Bootstrap();	
				b.group(inboundChannel.eventLoop());		

ctx.channel().config().setAutoRead(false);	
				ChannelFuture	f	=	b.connect(remoteHost,	remotePort);	
				f.addListener(f	->	{	
							if	(f.isSuccess())	{	
											ctx.channel().config().setAutoRead(true);	
							}	else	{	...}	
				});	
		}	
}

This is not a contribution

Proxy

Slow peers due slow connection

Risk of writing too fast

Backoff writing and reading This is not a contribution

SND

RCV

TCP

SND

RCV

TCP

Network

Fast

Slow ?
Slow ?

Slow ?

Application Slow ? Application

Fast

OOME

Backpressure

Peer1 Peer2

Memory Usage

Handling a lot of concurrent connections

Need to safe memory to reduce heap sizes

Use Atomic*FieldUpdater

Lazy init fields

This is not a contribution

Connection Pooling

Having an extensible connection pool is important #3607

flexible / extensible implementation

This is not a contribution

https://github.com/netty/netty-tcnative/pull/9

We are hiring!
http://www.apple.com/jobs/us/

This is not a contribution

Thanks

http://www.apple.com/jobs/us/

