
Exploding the
Linux Container Host
Presenter: Ben Corrie (@bensdoings)

2

Containers vs VMs

•  Google Wisdom:
– VMs and Containers are similar but different
–  Try running containers in VMs for security
– Containers are best for scale-out density
– VMs are better for legacy apps

3

Docker Hub Docker
Client

LINUX HOST

Container

Control & TTY
/ REST

Pull
Image Docker

Daemon
Docker

Daemon

Layered file
system (AUFS)

S
D
N

Docker
Images NET TRAFFIC

TO
CONTAINERS

Linux Kernel

1.  A executable process
2.  Resource constraints / private namespace
3.  Binary dependencies: Application, runtime, OS
4.  A shared Linux kernel for running the executable

STATELESS
PORTABLE

FAST
SECURE

What is a Container?

4

What is a Container Host?

Docker
Client

LINUX HOST

LXC
Container

Docker
Daemon Container

Container Layered file
system (AUFS)

S
D
N

Docker
Images NET TRAFFIC

TO
CONTAINERS

Linux Kernel

Control & TTY
/ REST

Docker Hub

Pull
Image

1.  Control plane & lifecycle management for containers
2.  Resource scheduling and a container abstraction
3.  Infrastructure abstractions: Storage, networking etc
4.  A Linux kernel

STATEFUL

LONG-RUNNING
SINGLE USER
SINGLE USE

5

My Demo Container Hosts

Derek

Clive

6

Docker Hub Docker
Client

ESX HOST / HYPERVISOR

ContainerVM

Control & TTY
/ REST

Pull
Image Docker

Daemon
Docker

Daemon VM

Layered file
system (VMDK)

S
D
N

Docker
Images NET TRAFFIC

TO
CONTAINERS

ESX Kernel

1.  A executable process
2.  Resource constraints / private namespace
3.  Binary dependencies: Application, runtime, OS
4.  A “shared” Linux kernel for running the executable

STATELESS
PORTABLE

FAST
SECURE

What is a ContainerVM?

Linux Kernel

7

Why?????

•  Simple answer: The Container Host
•  Linux container host limitations

– Single Docker daemon = single user
–  Long running – slow and disruptive to refresh
– Stateful – images, volumes, containers, patch levels
– Static size – only resource efficient if well-packed
– Kernel is a single point of failure

•  When virtualized
–  Limited access to virtual infrastructure
–  Limited monitoring of containers without 3rd party agents
– Duplicated infrastructure layer

STATEFUL

LONG-RUNNING
MULTI USER
MULTI USE

8

Differences between Derek & Clive

1.  Multi-tenancy

2.  Dynamic resource boundaries
3.  Disposable nested container hosts

– Control plane performance
– Statelessness – container hosts as cattle!
– Eg. Docker in Jenkins Slaves

•  Dependencies on slaves are contained
•  Slaves themselves need to be “garbage collected”

– Eg. Pre-populated container cache for Docker build -> push -> dispose
– Eg. Save /var/lib/docker in a volume – state persists, host does not

4.  Multi-OS support

The Docker ecosystem you love on the Hypervisor you trust

• Provision Docker containers direct to vSphere
–  No need for a Linux container host
–  Vanilla Docker client connects to Docker Daemon appliance

• Hardware-virtualized “containerVM” abstraction
–  Containers are provisioned as VMs, not in VMs
–  Hardware virtualization provides unprecedented security and isolation
–  x86 abstraction allows for more than just Linux

• “Instant Clone” delivers container speed and efficiency
–  Container start in 2 seconds with a “shared” Linux Kernel

 9

What is Bonneville?

10

Limitations Virtualizing Docker As-Is

 ESX Host/Cluster

C1 C2

Docker
API + Daemon

Images
Multi-user
guest OS

Tenant wasting ESX memory
when containers stopped

Other App

Tenant at capacity

Duplicated
Image caches

Limited isolation

Only Linux kernels that
support Docker

Exploding the Linux Container Host – in detail

 ESX Host/Cluster

Other App

Modified Docker
API + Daemon

Multi-user guest OS

Images

C
1

C
2

 ESX Host/Cluster

C
1

C
2

Docker
API + Daemon

Images
Multi-user
guest OS

Tenant
wasting ESX

memory when
containers
stopped

Other App

Tenant
at capacity

Duplicated
Image caches

Limited
isolation

Shared
Image Cache

Robust
Isolation

Tenant not
at capacity

From earlier… To this…

Tenant consuming
minimal memory

12

What’s inside? Instant Clone and the “shared” Linux Kernel

ESX Host

Bonneville Appliance

Photon Pico (25MB)

C1 C2 C3

Provisions

Shared
Kernel

Photon Pico Kernel

Container Image A

Container Image B

Container Image C

Read/Write Layer

Volume Volume

•  Early concerns about efficiency of 1:1 container / VM mapping

•  Container efficiency typically measured in terms of start time and memory consumption
•  Start Time

–  Start time not inherent limitation of VMs, simply the need to boot an OS
–  Instant Clone removes the need for OS boot
–  Docker appeal more than just container start time – pull image, run image, delete image flow
–  Developers want instant container start, less critical when provisioning apps

•  Memory consumption
–  Misleading “Hello World” comparisons often made. Real apps use memory regardless
–  Bonneville memory efficiencies achieved through Instant Clone + Photon Pico
–  Instant Clone raises the potential for sharing much more than just the base OS

13

Bonneville Efficiency

•  Goal for Bonneville is complete transparency to the client / user
•  Some concepts have to be a little different
•  Container privileged access

–  In Docker, flag gives a container privileged access to both the host kernel and the host itself
–  In Bonneville, privileged access is the default with zero access to the host

•  Host mounted volumes
–  In Docker, you can mount a volume on the host into a container

•  Useful for certain things, but means that the container is not idempotent

–  In Bonneville, the host and container don’t share a filesystem

•  Default container size
–  In Docker if no constraints are specified, container has access to all the hosts resources
–  In Bonneville this wouldn’t make sense, so a default size is used

14

Docker Feature Parity: Can you even tell?

•  What is a “Container Host”?
–  A finite amount of compute resource with the necessary capability to host containers

•  A container host does not have to be bound to an OS or physical machine

15

vSphere Integrated Containers: The Virtual Container Host

Concept Linux ESX VCH

Container host
boundaries

A VM or physical box An ESX server A vSphere resource pool

Grow container host Shut down VM / N/A N/A Reconfigure the pool

Clustering Docker Swarm Docker Swarm vSphere cluster

Nested hosts Docker-in-Docker Resource pool / Photon Resource pool / Photon

•  Various takes on the “containerVM” concept have recently emerged
–  “Clear Containers” from Intel

•  Similar to Bonneville in concept, but different in execution – more of an OSS POC
•  KVM without x86 QEMU layer or BIOS initializes Intel “Clear Linux” very fast

–  “Hyper”
•  Startup based in China with a very similar concept to Bonneville
•  Supports KVM and Xen with a custom Linux kernel. Intended as Container-as-a-Service infrastructure

•  Security and Isolation at the heart of these solutions
–  Hypervisor hardware isolation is well proven and battle-hardened. Linux kernel exploits keep emerging
–  Need to be able to secure and verify provenance of container images

•  Bonneville delivers best of all worlds
–  Robust security and isolation of a VM
–  Full privileged access to a kernel – load kernel modules, loopback mount etc.

16

Isolation and Security

• Docker is a platform

• Bonneville is the Docker platform for vSphere

• Bonneville gives you best of both worlds
– Speed, efficiency and workflow of containers

– Security, isolation and flexibility of VMs

• Don’t let your container hosts become pets!

@bensdoings

17

Summary

