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Containers vs VMs 

•  Google Wisdom: 
– VMs and Containers are similar but different 
–  Try running containers in VMs for security 
– Containers are best for scale-out density 
– VMs are better for legacy apps 
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What is a Container? 
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What is a Container Host? 
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My Demo Container Hosts 
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What is a ContainerVM? 

Linux Kernel 
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Why????? 

•  Simple answer: The Container Host 
•  Linux container host limitations 

– Single Docker daemon = single user 
–  Long running – slow and disruptive to refresh 
– Stateful – images, volumes, containers, patch levels 
– Static size – only resource efficient if well-packed 
– Kernel is a single point of failure 

•  When virtualized 
–  Limited access to virtual infrastructure 
–  Limited monitoring of containers without 3rd party agents 
– Duplicated infrastructure layer 
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Differences between Derek & Clive 

1.  Multi-tenancy 

2.  Dynamic resource boundaries 
3.  Disposable nested container hosts 

– Control plane performance 
– Statelessness – container hosts as cattle! 
– Eg. Docker in Jenkins Slaves 

•  Dependencies on slaves are contained 
•  Slaves themselves need to be “garbage collected” 

– Eg. Pre-populated container cache for Docker build -> push -> dispose 
– Eg. Save /var/lib/docker in a volume – state persists, host does not 

4.  Multi-OS support 



The Docker ecosystem you love on the Hypervisor you trust 

• Provision Docker containers direct to vSphere 
–  No need for a Linux container host 
–  Vanilla Docker client connects to Docker Daemon appliance 

• Hardware-virtualized “containerVM” abstraction 
–  Containers are provisioned as VMs, not in VMs 
–  Hardware virtualization provides unprecedented security and isolation 
–  x86 abstraction allows for more than just Linux 

• “Instant Clone” delivers container speed and efficiency 
–  Container start in 2 seconds with a “shared” Linux Kernel 
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What is Bonneville? 
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Limitations Virtualizing Docker As-Is   
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Exploding the Linux Container Host – in detail   
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What’s inside? Instant Clone and the “shared” Linux Kernel 
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•  Early concerns about efficiency of 1:1 container / VM mapping 

•  Container efficiency typically measured in terms of start time and memory consumption 
•  Start Time 

–  Start time not inherent limitation of VMs, simply the need to boot an OS 
–  Instant Clone removes the need for OS boot 
–  Docker appeal more than just container start time – pull image, run image, delete image flow 
–  Developers want instant container start, less critical when provisioning apps 

•  Memory consumption 
–  Misleading “Hello World” comparisons often made. Real apps use memory regardless 
–  Bonneville memory efficiencies achieved through Instant Clone + Photon Pico 
–  Instant Clone raises the potential for sharing much more than just the base OS 
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Bonneville Efficiency 



•  Goal for Bonneville is complete transparency to the client / user 
•  Some concepts have to be a little different 
•  Container privileged access 

–  In Docker, flag gives a container privileged access to both the host kernel and the host itself 
–  In Bonneville, privileged access is the default with zero access to the host 

•  Host mounted volumes 
–  In Docker, you can mount a volume on the host into a container 

•  Useful for certain things, but means that the container is not idempotent 

–  In Bonneville, the host and container don’t share a filesystem 

•  Default container size 
–  In Docker if no constraints are specified, container has access to all the hosts resources 
–  In Bonneville this wouldn’t make sense, so a default size is used 
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Docker Feature Parity: Can you even tell? 



•  What is a “Container Host”? 
–  A finite amount of compute resource with the necessary capability to host containers 

•  A container host does not have to be bound to an OS or physical machine 
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vSphere Integrated Containers: The Virtual Container Host 

Concept Linux ESX  VCH 

Container host 
boundaries 

A VM or physical box An ESX server A vSphere resource pool 

Grow container host Shut down VM / N/A N/A Reconfigure the pool 

Clustering Docker Swarm Docker Swarm vSphere cluster 

Nested hosts Docker-in-Docker Resource pool / Photon Resource pool / Photon 



•  Various takes on the “containerVM” concept have recently emerged 
–  “Clear Containers” from Intel 

•  Similar to Bonneville in concept, but different in execution – more of an OSS POC 
•  KVM without x86 QEMU layer or BIOS initializes Intel “Clear Linux” very fast 

–  “Hyper” 
•  Startup based in China with a very similar concept to Bonneville 
•  Supports KVM and Xen with a custom Linux kernel. Intended as Container-as-a-Service infrastructure 

•  Security and Isolation at the heart of these solutions 
–  Hypervisor hardware isolation is well proven and battle-hardened. Linux kernel exploits keep emerging 
–  Need to be able to secure and verify provenance of container images 

•  Bonneville delivers best of all worlds 
–  Robust security and isolation of a VM 
–  Full privileged access to a kernel – load kernel modules, loopback mount etc. 
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Isolation and Security   



• Docker is a platform 

• Bonneville is the Docker platform for vSphere 

• Bonneville gives you best of both worlds 
– Speed, efficiency and workflow of containers 

– Security, isolation and flexibility of VMs 

• Don’t let your container hosts become pets! 

@bensdoings  
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Summary 


