
Explorations of the Three
Legged Performance Stool
Charlie Hunt
JVM & Performance Junkie

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

The following is intended to or may outline our [Oracle] general product direction.
It is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The development,
release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3

Who is this guy?

! Currently leading a several HotSpot JVM projects at Oracle
! Held various performance architect roles at Oracle, Salesforce.com &

Sun Microsystems
! Lead author of Java Performance, published Sept 2011

Charlie Hunt

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

Who is this guy?

And for those who enjoy reading in additional languages …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Who is this guy?

And coming soon to a book store near you …

Java Performance Companion – book cover in process
Authors: Monica Beckwith, Bengt Rutisson, Poonam Parhar & Charlie Hunt

Intended to compliment the material found Java Performance

Java Performance
Companion

Beckwith, Parhar, Rutisson, Hunt

?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

What to expect

This session is about understanding the relationship
between throughput, latency and footprint along with,
understanding where system capacity fits in.

And, reasoning about the benefit & impact of each when
making changes, JVM configuration or application.

We will also look at a case study / example.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

Agenda

! The key performance attributes

!  (Very) quick re-visit of the HotSpot JVM GCs

! Reason about trade-offs with the performance Attributes

! Case Study (a JDK 9 feature)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

The Performance Attributes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

Three Legged Stool

! Throughput
! Latency
!  (Memory) Footprint

la
te

nc
y

fo
ot

pr
in

t

th
ro

ug
hp

ut

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 10

2 of 3 Principle

Improving one or two of these performance attributes,
(throughput, latency or footprint) results in sacrificing
some performance in the other.

Hunt, John. Java Performance. Upper Saddle River, NJ, Addison-Wesley, 2011

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11

2 of 3 Principle (updated)

Improving all three performance attributes [usually]
requires a lot of non-trivial [development] work.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 12

Another Principle - (yet to be named)

An improvement in throughput and/or latency may reduce
or lower the amount of available CPU to the application,
or other applications executing on the same system.
Thus impacting the capacity of the system.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 13

Perhaps an Enhanced Three Legged Stool ?

! Throughput
! Latency
!  (Memory) Footprint
! Capacity

la
te

nc
y

fo
ot

pr
in

t

th
ro

ug
hp

ut

capacity

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 14

Quick (re)visit of HotSpot
JVM GCs

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 15

Generational GCs

!  [Almost] all modern JVMs use a generational GC
–  Segregate objects by age into different spaces, and bias collection of

younger objects
–  Typically two generations; young & old

!  JVMs with generational GCs
–  HotSpot – all GCs supported by Oracle
–  Zing – C4 GC
–  J9 – all AFAIK … admit I’m not familiar with J9’s GCs

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 16

Why Generational GC ?

! Weak generational hypothesis
–  Most objects die young

! Generally accepted reason for generational GCs
–  Improved throughput, and scaling to large Java heaps

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 17

HotSpot JVM Java Heap Layout

The Java Heap

Young Generation
For new & young objects

	

	

 Old Generation
For older / longer living objects

	

	

[Permanent Generation | Metaspace (JDK 8+)]
for VM & class meta-data

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 18

To
Survivor

From
Survivor

HotSpot JVM Java Heap Layout

The Java Heap

Eden

	

	

 Old Generation
For older / longer living objects

	

	

[Permanent Generation | Metaspace (JDK 8+)]
for VM & class meta-data

New	
 object	
 alloca,ons	

Reten,on	
 /	
 aging	
 of	
 young	

objects	
 during	
 young	
 /	
 minor	
 GCs	
 	

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 19

Things to reason about wrt
GC & your application

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 20

GC Duration (pause time)

! Duration of GC activity is mostly a function of the number of live
objects

–  Other factors
!  Object graph structure
!  Use of, and number of Reference objects
!  Memory locality

What impacts pause time duration?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 21

GC Duration (pause time)

! Reduce young generation Eden size
–  Smaller space implies fewer live objects (may not always be true!)

Strategies to reduce (young) GC duration

Eden (2 GB)

Eden (1 GB)

! Concurrent young collector?
–  Eliminate pause by collecting concurrently

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 22

GC Duration (pause time)

! Reduce young generation Eden size
–  Likely lower throughput due to more frequent application pauses
–  More frequent GCs due to smaller size (more on that in a moment)
–  More object promotions to old generation due more rapid object aging

! Concurrent young collector
–  Available capacity impact due to higher CPU utilization from

concurrent collection activity
–  Throughput and/or latency may be impacted due to CPU usage and

CPU cache eviction
–  Footprint may be impacted due to floating garbage

Consequences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 23

GC Duration (pause time)

! Lower application’s object allocation rate
–  Lower injection rate or load on the application

!  Lower system throughput, & lower system capacity, maybe better
latency

–  Capture memory profiles and reduce object allocations
!  Requires (development) work, and may be non-trivial
!  Might actually increase number of live objects at each young GC

–  Implies a potential increase in pause time
!  Throughput and latency may (or should) improve due to less

frequent GC events

Other alternatives

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 24

Young GC Frequency

! How often Young GC’s occur influenced by
–  Application object allocation rate – how fast it’s allocating objects
–  Size of Eden space

!  This applies to the HotSpot JVM

Often not thought of … and applicable to concurrent collection too

!  For other generational JVMs it will be the size of the space where new
objects are allocated

!  For STW collectors, once that space is exhausted, a GC event occurs
!  For concurrent collectors, there’s usually an occupancy threshold that

once it’s surpassed, a concurrent GC event commences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 25

Influencing Minor GC Frequency

! Eden space fills more slowly with reduced object allocation rate

Reduce object allocation rate

Eden (1 GB)

! Obvious, right? 2x drop in allocation rate, time to fill Eden
space increases 2x, i.e. minor GC frequency cut in ½

Eden (1 GB)

object allocation rate
20 MB / second

40 MB / second

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 26

Influencing Minor GC Frequency

Make Eden size bigger (assuming same object allocation rate)

Eden (1 GB)

Eden (2 GB)

! Same allocation rate, 2x increase in Eden space, time between
GC increases 2x, i.e. minor GC frequency cut in ½

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 27

Young GC Frequency

! Reduce object allocation rate (saw this before, right?)
–  Lower injection rate or load on the application

!  Lower system throughput, lower system capacity, maybe better
latency

–  Capture memory profiles and reduce object allocations
!  Requires (development) work, and may be non-trivial
!  Might actually increase number of live objects

–  Implies a potential increase in pause time, or GC time
!  Throughput and latency may (or should) improve

Consequences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 28

Young GC Frequency

!  Increase young generation Eden size
–  Less frequent GCs due to larger size
–  Fewer object promotions due more effective object aging
–  Likely higher throughput due to less frequent application pauses or

collection activity
!  All 3 probably sound attractive

–  Worse case latency may be higher due to larger space to GC
!  GC duration / pause time could be longer
!  Hmmm … may be not so attractive?

Consequences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 29

Young GC Frequency

! What about the potential impact with a concurrent young
generation collector ?

–  Less impact on available capacity due to less frequent collection
activity

–  May see higher throughput and/or lower latency due to lower CPU
usage and lower CPU cache eviction due to less frequent concurrent
collection activity

–  Larger footprint due to larger young generation size

Consequences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 30

Old GC Duration

! Number of live objects and objects to move for compaction
–  Other factors

!  Object graph structure
!  Use of, and number of Reference objects
!  Memory locality

! Differing GC algorithms; stop the world, mostly concurrent,
concurrent, mark sweep, mark sweep compact, etc.

–  And, details within the GC algorithm, i.e. mostly concurrent write-
barrier implementation, concurrent read & write barrier
implementations

What influences Old GC duration?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 31

Old GC Duration

! Reduce old generation size
–  Smaller space implies fewer live objects (may not always be true!)

Strategies to reduce (old) GC duration (pause time)

Old Gen (4 GB)

Old (2 GB)

! Use a concurrent, or mostly concurrent old collector?
–  Eliminate, or reduce lengthy pause(s) by collecting concurrently or

mostly concurrently

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 32

Old GC Duration (pause time)

! Reduce old generation size
–  More frequent GCs due to smaller size, i.e. space fills faster
–  Throughput and/or latency may be impacted due to collections

occurring more frequently
–  Available capacity impact due to higher CPU utilization from more

frequent collection activity
–  Likely a smaller footprint due to smaller old generation size

Consequences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 33

Old GC Duration (pause time)

! What about using a concurrent, or mostly concurrent old collector
–  Available capacity impact due to higher CPU utilization from

concurrent collection activity
–  Throughput and/or latency may be impacted due to CPU cache

eviction from concurrent GC activity
–  Footprint may be impacted due to floating garbage

Consequences of reduced old gen size

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 34

Old GC Frequency

! How often Old GC’s occur influenced by
–  Object promotion rate – how many objects promoted from young to old
–  Size of the Old space

!  This applies to the HotSpot JVM

Applicable to mostly concurrent collectors too

!  For other generational JVMs it will be the size of the space where older
objects are promoted / allocated

! For STW collectors, once the space is exhausted, a GC event occurs
! For (mostly) concurrent collectors, there’s usually an occupancy

threshold that once it’s surpassed, a concurrent GC event commences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 35

Influencing Old GC Frequency

! Old space fills more slowly with reduced object allocation rate

Reduce promotion rate

Old Generation (4 GB)

! Obvious, right? 2x drop in promotion rate, time to fill Old
Generation space increases 2x, i.e. old GC frequency cut in ½

Old Generation (4 GB)

promotion rate
2 MB / second

4 MB / second

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 36

Influencing Old GC Frequency

Make Old Generation size bigger (assuming same promotion rate)

Old Generation (4 GB)

Old Generation (8 GB)

! Same promotion rate, 2x increase in Old Generation space,
time between GC increases 2x, i.e. Old GC frequency cut in ½

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 37

Old GC Frequency

! Reduce promotion rate
–  Lower injection rate or load on the application

!  Lower system throughput & system capacity, maybe better latency
–  Capture memory profiles and reduce promotions

!  Focus on object retention as much as, or more than object
allocations (Look at java.util.LinkedList element removal)

!  Requires (development) work, and may be non-trivial
!  Throughput and latency may (or should) improve

Consequences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 38

Old GC Frequency

!  Increase old generation size
–  Less frequent old GCs due to larger size
–  Likely higher throughput, and possibly lower latency due to less

frequent application pauses or collection activity
!  All 3 are probably attractive

–  Worse case latency likely impacted for non-concurrent, or non mostly
concurrent collectors
!  Hmmm … may be not so attractive?

Consequences

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 39

Old GC Frequency

! What about the potential impact with a concurrent, or mostly
concurrent old generation collector ?

–  Less impact on available capacity due to less frequent collection
activity

–  May see higher throughput and/or lower latency due to lower CPU
cache eviction due to less frequent concurrent GC activity

–  Larger footprint due to larger old generation size

Consequences of larger old gen space

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 40

Case Study: String Density

To fill a shape with an image.

1.  Use existing picture box, DO NOT delete and
create new picture box.

2.  Right click on the shape.
3.  At the bottom of the submenu select

“Format Shape”
4.  Select “Fill” at the top of the “Format Shape”

dialog box.
5.  Select “Picture or Texture fill” from the options.
6.  And select “File” under the “Insert from” option.
7.  Navigate to the file you want to use and

select “Insert”
8.  On the “Format” tab, in the Size group, click on

“Crop to Fill” in the Crop tool and drag the image
bounding box to the desired size

9.  DELETE THIS INSTRUCTION NOTE WHEN
NOT IN USE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 41

String Density

!  JDK 9 feature
! More space-efficient internal representation for java.lang.String
! Terminology

–  String Density == Project name
–  Compact Strings == Feature name

! Goals
–  Lower memory footprint, yet no regression in throughput

!  Implied are no latency or CPU usage regressions

JEP 254: Compact Strings

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 42

String Density

 Lots of work!

What about the 3 legged stool ?!?!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 43

String Density

! 10 contributing engineers
–  8 contributing from Oracle
–  2 contributing from Intel

! Each spending about 1 year, ½ time on String Density
–  About 5 man years of effort

What about the effort?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 44

String Density

!  Improve space efficiency for String and related classes
! Preserve throughput and latency
! Preserve compatibility

–  Java supports UTF-16, yet many apps only use lower byte in Strings
–  No new Java SE APIs, no changes required for upstream applications

! Replacement for JDK 6’s Compressed Strings
! Platforms: X86/X64, SPARC, ARM 32/64
! OS: Linux, Solaris, Windows and Mac OS X

Additional requirements

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 45

String Density

! Repository of 950+ heap dumps from various Oracle FMW, Fusion
Apps, and Java applications

–  How much can memory footprint be reduced?
!  Java Object Layout tools

–  If fields added or removed from String class, what’s the footprint impact per
String instance?

!  JVM model’s analyzed; 32-bit, 64-bit w/ no compressed oops, 64-bit
with compressed oops (8 byte aligned), and 64-bit with compressed
oops (16 byte aligned)

Analysis approach

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 46

String Density

! Distribution of the live data size similar across the models
–  Roughly 300 MB to 2.5 GB with a long tail

!  char[]’s consume about 10% - 45% of the live data size
! Most Strings contain single byte chars
! 75% of Strings are 35 chars or smaller

–  Long tail distribution as the String sizes get larger beyond 35 chars

! 35% to 40% reduction in char[] footprint, not 50% theoretical reduction
! 5% - 15% reduction in application footprint

What we learned

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 47

String Density

! Store chars in String as either UTF-16, or ISO-8859-1/Latin1
–  Stripping off leading zero byte of two byte UTF-16 char

! Use byte[] instead of char[] to store String’s characters
–  1 byte per char for ISO-8850-1/Latin1
–  2 bytes per char for UTF-16

! Add an encoding byte field to indicate the encoding in use
–  Ability to extend to support additional character encodings

Proposed solution

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 48

String Density

! Strings with all leading byte bytes as 0
–  Candidate for ISO-8850-1/Latin1 encoding
–  Leading 0 bytes stripped off, and trailing bytes stored, i.e. single byte per

char
! String with any leading byte in incoming char as non 0

–  Cannot be encoded as ISO-8859-1/Latin1, stored as UTF-16 encoded, i.e.
two bytes per char

–  Compress (deflate) incoming characters, inflate to UTF-16 when returning
sequence of chars via String API(s)

Proposed solution continued …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 49

String Density

! Why not UTF-8?

Proposed solution continued …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 50

String Density

! Why not UTF-8?
–  Cause we’re stupid!

Proposed solution continued …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 51

String Density

! Why not UTF-8?
–  Cause we’re stupid! Just joking of course!!!
–  UTF-8 supports variable width characters
–  Many String operations require random access into sequence of chars

!  Their throughput performance would suffer!
–  UTF-8 encoding is great for character transmission

!  It’s not performant for String operations

Proposed solution continued …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 52

String Density

JDK 8 String class versus new JDK 9 String class

New String Class (JDK 9)
 {
 private final byte[] value;
 private final byte coder;
 private int hash;
 ...
}

Old String Class (JDK 8)
{
 private final char value[];
 private int hash;
 ...
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 53

String Density

What about memory footprint per String instance?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 54

String Density

What about memory footprint per String instance?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 55

String Density

! Developed 400 JMH micro-benchmarks for String APIs
–  Results

!  http://cr.openjdk.java.net/~thartmann/compact_strings/microbenchmarks
–  Micro-benchmarks (and various other String Density artifacts)

!  http://cr.openjdk.java.net/~shade/density/

! String is highly optimized using SIMD instructions
–  About 55 specific JIT compiler optimizations for String related operations

!  Non-trivial amount of work
!  Why not fly your own single byte String class?

What about throughput?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 56

String Density

! SPECjbb2015 (Intel x64)
–  Live data size reduction of about 7% (footprint reduction)
–  Critical-jOps increased by about 11% (latency maintained or improved)

!  At critical-jOps, CPU utilization remained the same as baseline
–  Max-jOps increased by about 3% (throughput improved)

! SPECjbb2005 (Intel x64)
–  Live data size reduction of about 21%
–  Throughput increase of about 5%
–  23% reduction in GC frequency

Macro-level performance

*SPECjbb2015 & SPECjbb2005 are trademarks of the
 Standard Performance Evaluation Corporation.
 See http://www.spec.org for more information.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 57

String Density

! With a lot of effort ….
! We realized a reduction in memory footprint, yet able to maintain or

improve throughput, and maintain latency or reduce latency
! And, able to maintain or improve system capacity

Three legged stool revisited

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 58

Call to Action

! Can’t wait to try it on your application(s) ?
–  Again, a JDK 9 feature

!  Implementation:
–  Repository: http://hg.openjdk.java.net/jdk9/sandbox/
–  Branch: JDK-8054307-branch

Interested or Intrigued?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 59

Call to Action

! Build Steps:
$ hg clone http://hg.openjdk.java.net/jdk9/sandbox/
$ cd sandbox
$ sh ./get_source.sh
$ sh ./common/bin/hgforest.sh up -r JDK-8054307-branch
$ make configure
$ make images

! Command line option to enable/disable feature:
 -XX:+CompactStrings / -XX:-CompactStrings

Interested or Intrigued?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 60

Main Takeaways

Raising all three legs of the performance stool is hard,
but possible with a lot of non-trivial effort.

Reason about the tradeoffs in realizing improvements in
one or two of the performance attributes, i.e. understand
the alternatives, and realize system capacity may be a
criteria that fits in here too.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 61

Acknowledgements

! String Density Team
–  Oracle

!  Aleksey Shipilev, Sherman Shen, Brent Christian, Roger Riggs, Tobias
Hartmann, Vladimir Kozlov, Guy Delemarter

–  Intel
!  Sandhya Viswanathan, Vivek Deshpande
!  Special thanks to Sandhya – joint JavaOne 2015 presentation

! HotSpot GC Engineering Team
–  Past and present members

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 62

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 63

