
Go GC:
Prioritizing Low Latency and
Simplicity
Rick Hudson
Google Engineer

QCon San Francisco
Nov 16, 2015

Google Confidential and Proprietary

My Codefendants: The Cambridge Runtime Gang

https://upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Sato_Tadanobu_with_a_goban.jpeg/500px-Sato_Tadanobu_with_a_goban.jpeg

Google Confidential and Proprietary

Go: A Language for Scalable Concurrency

Lightweight threads (Goroutines)
Channels for communication
GC for scalable APIs
Simple Foreign Function Interface

Simplicity: The Key to Success

Google Confidential and Proprietary

Go: A Language for Scalable Open Source Projects

Do Less, Enable More
Learning
Implementation
Tooling
Reading
Understanding

Sharing

Google Confidential and Proprietary

Go: A Runtime for Scalable Applications

This is the story of Go’s garbage collector

Image by Renee French

Google Confidential and Proprietary

Making Go Go: Establish A Virtuous Cycle

News Flash:
2X Transistors != 2X Frequency

More transistors == more cores
 Only if software uses more cores

Long term
Establish a virtuous cycle

Short term
Increase Go Adoption

Software++

Hardware++

Hardware++

HW++

HW++

Software++

Software++

Software++

 #1 Barrier: GC Latency

Google Confidential and Proprietary

When is the best time to do a GC?

When nobody is looking.

Using camera to track eye movement
When subject looks away do a GC.

Recovering

https://upload.wikimedia.org/wikipedia/commons/3/35/Computer_Workstation_Variables.jpg

https://upload.wikimedia.org/wikipedia/commons/3/35/Computer_Workstation_Variables.jpg
https://upload.wikimedia.org/wikipedia/commons/3/35/Computer_Workstation_Variables.jpg
https://upload.wikimedia.org/wikipedia/commons/3/35/Computer_Workstation_Variables.jpg

Google Confidential and Proprietary

 Waiting

Pop up a network wait icon

https://commons.wikimedia.org/wiki/File:WIFI_icon.svg#globalusage

https://commons.wikimedia.org/wiki/File:WIFI_icon.svg#globalusage
https://commons.wikimedia.org/wiki/File:WIFI_icon.svg#globalusage

Google Confidential and Proprietary

Or
Trade Throughput for Reduced GC

Latency

A LittleV

Google Confidential and Proprietary

Latency

Nanosecond
 1: Grace Hopper Nanosecond 11.8 inches
Microsecond
 5.4: Time light travels 1 mile in vacuum
Millisecond
 1: Read 1 MB sequentially from SSD
 20: Read 1 MB from disk
 50: Perceptual Causality (cursor response threshold)
 50+: Various network delays

Saccades (ms)
 30 Reading
200 Involuntary

Eye Blink
300 ms

http://www.youtube.com/watch?v=wq71MzwMIIs

Google Confidential and Proprietary

GC 101
Root Scan Phase

Heap

Stacks/Registers
Globals

Google Confidential and Proprietary

Mark Phase

Stacks/Registers
Globals

Righteous Concurrent GC struggles with Evil Application changing pointers

Google Confidential and Proprietary

Sweep Phase

Stacks/Registers
Globals

Google Confidential and Proprietary

Go isn’t Java: GC Related Go Differences

Java
Tens of Java Threads
Synchronization via objects/locks
Runtime written in C

Objects linked with pointers

Go
Thousands of Goroutines
Synchronization via channels
Runtime written in Go

Leverages Go same as users
Control of spatial locality

Objects can be embedded
Interior pointers (&foo.field)

Simpler foreign function interface

 Let’s Build a GC for Go

Google Confidential and Proprietary

1.4 Stop the World

GCGC

Application Application

Google Confidential and Proprietary

Application

Application Application

Assist

GC

Application

Assist

GC

1 ms 3 ms

1.5 Concurrent GC

Google Confidential and Proprietary

GC Algorithm Phases

Off

Stack scan

Mark

Mark termination

Sweep

Off

Correctness proofs in literature (see me)

W
B

 o
n

S
TW

GC disabled
Pointer writes are just memory writes: *slot = ptr

Collect pointers from globals and goroutine stacks
Stacks scanned at preemption points

Mark objects and follow pointers until pointer queue is empty
Write barrier tracks pointer changes by mutator

Rescan globals/changed stacks, finish marking, shrink stacks, …
Literature contains non-STW algorithms: keeping it simple for now

Reclaim unmarked objects as needed
Adjust GC pacing for next cycle

Rinse and repeat

Google Confidential and Proprietary

Garbage Benchmark

9

8

7

6

5

4

3

2

1

0

 G
C

 P
au

se
 (L

ow
er

 is
 b

et
te

r)

 S

ec
on

ds

Heap Size (Gigabytes)

Google Confidential and Proprietary

Garbage Benchmark

2x Live heap size

GOGC knob: Space-Time Trade off
More heap space: less GC time, and vice-versa

Implementing a one knob GC is a challenge

Google Confidential and Proprietary

GOGC=200

Heap Size (Megabytes):
Live heap kept constant

Splay: Increasing Heap Size == Better Performance
E

xe
cu

tio
n

Ti
m

e
(L

ow
er

 is
 B

et
te

r)

Google Confidential and Proprietary

JSON: Increasing Heap Size == Better Performance

Heap Size (Megabytes)

GOGC=200

E
xe

cu
tio

n
Ti

m
e

(L
ow

er
 is

 B
et

te
r)

Google Confidential and Proprietary

Onward: We’re not done yet….

Tell people that GC latency is not a barrier to Go’s adoption

Tune for even lower latency
higher throughput
more predictability

Tune for user’s applications
Fight devils reported by users

 Increase Go Adoption
 Establish Virtuous Cycle

Questions

