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Stream Data Allows Us To Feel The Pulse Of Cities



Marketplace Health
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What’s Going on Now
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What's Happened?
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Status Tracking
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Dispatch Query Service

Choose a city

Driver States
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Dispatch Query Service
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A Little Background



Uber’s Platform Is a Distributed State Machine

Rider States

Inwte—7\
GC
.
Declin \ ookin




Uber’s Platform Is a Distributed State Machine
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Applications canitido everything




Instead, Applications Emit Events



Events Should Be Available In Seconds




Events Should Rarely Get Lost



Events Should Be Cheap And Scalable






Where are the challenges?



Many Dimensions

Dozens of fields per event



Granular Data
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Granular Data
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Granular Data

Over 10,000 hexagons in the city
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Granular Data

/ vehicle types
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Granular Data

1440 minutes in a day

- w



Granular Data

13 driver states

- M



Granular Data

300 cities

- M



Granular Data

1 day of data: 300 x 10,000 x 7 x 1440 x 13 = 393 hillion
possIble combinations

- W



Unknown Query Patterns

Any combination of dimensions



Variety of Aggregations

- Heatmap
- [op N
- Histogram

- count(), avg(), sum(), percent(), geo



Different Geo Aggregation
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Large Data Volume

- Hundreds of thousands of events per
second, or billions of events per day

- At least dozens of fields in each event



Tight Schedule



Key: Generalization



Data Type

- Dimensional Temporal Spatial Data

state driver_arrived
vehicle type uber X
timestamp 13244323342
lattitude 12.23
longitude 30.00




Data Query

- OLAP on single-table temporal-spatial data

SELECT <agg functions>, <dimensions>
FROM <data source>

WHERE <boolean filter>

GROUP BY <dimensions>

HAVING <boolean filter>

ORDER BY <sorting criterial>

LIMIT <n>

DO <post aggregation>



Finding the Right Storage System



Minimum Requirements

- OLAP with geospatial and time series support
- Support large amount of data
+ Sub-second response time

- Query of raw data



It cant be a KV store



Challenges to KV Store

Pre-computing all keys is 0(2") for both space
and time



It cant be a relational database



Challenges to Relational DB

- Managing multiple indices Is painful

- Scanning is not fast enough



A System That Supports

» Fast scan
+ Arbitrary boolean queries
- Raw data

- Wide range of aggregations



Elasticsearch



Highly Efficient Inverted-Index For Boolean Query




Built-in Distributed Query



Fast Scan with Flexible Aggregations







Are We Done?



Transformation

e.g. (Lat, Long) -> (zipcode, hexagon)



Dynamic Pricing




Trend Pre

Forecast vs. actual for user demand

fcst mean
fcst low
fcst_high
actual _dmd

forecast % error
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echnically Speaking: Clustering & Pr(D, S, E)
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New Use Cases —> New Requirements



Pre-aggregation



Joining Multiple Streams




Sessionization



Multi-Staged Processing



State Management



Apache Samza



Why Apache Samza?
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DAG on Kafka




Excellent Integration with Kafka



Excellent Integration with Kafka



Built-in Checkpointing



Built-in State Management



Processing Storage

Cold-ES




What If Storage Is Down?



What If Processing Takes Long?



Processing Storage

Cold-ES




Are We Done?
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Post Processing




Results Transformation and Smoothing



Scale of Post Processing

10,000 hexagons in a city



Scale of Post Processing

331 neighboring hexagons to look at



Scale of Post Processing

331 x 10,000 = 3.1 Million Hexagons to
Process for a Single Query



Scale of Post Processing

99%-1le Processing Time: 70ms



Post Processing

- Each processor Is a pure function

+ Processors can be composed by combinators



Post Processing

- Highly parallelized execution

. Pipelining



Post Processing

- Each processor Is a pure function

+ Processors can be composed by combinators

- Highly parallelized execution



Practical Considerations



Data Discovery



Elasticsearch Query Can Be Complex



/driverAcceptanceRate?

geo dist(10, [37, 22])&

time range(2015-02-04,2015-03-06)&
aggregate(timeseries(7d))&
eq(msg.driverld, 1)

-
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Elasticsearch Query Can Be Optimized
* Plpelining
- Validation

. Throttling



Benchmark between two queries
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Elasticsearch Can Be Replaced



Processing Storage Query

§g_,

Applications




There’s one more thing




There are always patterns In streams



There Is always need for quick exploration



How many drivers cancel a request 10 times in a
row within a 5-minute window?



Which riders request a pickup from 100 miles
apart within a half hour window?
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Complex Event Processing

FROM driver_canceled#window.time(10 min)

SELECT clientUUID, count(clientUUID) as cancelCount
GROUP BY clientUUID HAVING cancelCount > 10

INSERT INTO hipchat(room);



Implementation Becomes Easy



Thank You!

UBER



