Aaron Turon
Mozilla Research

Rust Is a systems programming language

that rur
segfau

s blazl

ngly fast, prevents nearly all

1S, anc

ouarantees thread safety.

- https://www.rust-lang.org/

https://www.rust-lang.org/

“Low-level”

5

Control

Go

Java Scala

Haskell

Safety

ThnoesstooaoivRdstn
| ow-level ==Sdigsafe

Why Rust!?

- You're already doing systems programming,

want safety or expressiveness.

- You wish you could do some systems work

- Maybe as an embedded piece in your
Java, Python, JS, Ruby, ...

Why Mozilla?
Browsers need control.

Browsers need safety.

Rust: New language for
safe systems programming.

Servo: Next-generation
browser built in Rust.

.
What is control?

void example() {
vector<string> vector; <—— Stack and inline layout.

auto& elem = vector[0@]; <«—— Interior references

1 <4+— Deterministic destruction

I string
vector

Stack Heap

Zero-cost abstraction

Ability to define abstractions that

Java

optimize away to nothing.

Not just memory layout:
- Static dispatch
- Template expansion

C++

What is safety!?

void example() {
vector<string> vector;

*auto& elem = vector([0]; /

vector.push_back(some_string);
cout << elem;

Mutating the vector
freed old contents.

vector

'3
o**
“

.JMangmuq;pqpanmzﬁuumaf
to freederpontey. to same

memory.

What about GC?

No control.
Requires a runtime.

Insufficient to prevent related problems:
iterator invalidation, data races, many others.

Ownership & Borrowing

"R

No need for Memory Data-race
a runtime safety freedom
(and more)

b

C++ GC

... Plus lots of goodies

- Pattern matching

- Traits

- “Smart” pointers

- Metaprogramming

- Package management (think Bundler)

TL;DR: Rust is a modern language

Ownership

n. The act, state, or right of possessing something.

Ownership (T)

fn give() { fn take(vec: Vec<int>) {

let mut vec = Vec::new(); // . T_

vec.push(1); I3

vec.push(2); Take ownership

take(vec); of a Vec<int>
I3

VeC

Compiler enforces moves

fn give() { fn take(vec: Vec<int>) {
let mut vec = Vec::new(); //
vec.push(1); s

vec.push(2);
take(vec);

po= «—— Error: vec has been moved

Prevents:
- use after free
- double moves

Borrow

v. To receive something with the promise of returning it.

Shared borrow (&T)

Mutable borrow (&mut T)

fn lender() { fn use(vec: &/ec<int>) {

* let mut vec = Vec::new(); // .
vec.push(1); I3 T
vec.push(2); “Shared reference
use(&v¢ec) ; to Vec<int>"
b Loan out vec
vec

Aliasing

*

Shared references are immutable:

fn use(vec: &Vec<int>) {

Error: cannot mutate shared reference

* Actually: mutation only in controlled circumstances

Mutable references

fn push_all(from: &ec<int>, to: &mut Vec<int>) {
for elem in from {
to.push(xelem); T

+
1 T mutable reference to Vec<int>

push() is legal

Mutable references

* fn push_all(from: &Vec<int>, to: &mut Vec<int>) {
for elem in from {

to.push(xelem);
I3
I3

What if from and to are equal?

fn push_all(from: &ec<int>, to: &mut Vec<int>) {
for elem in from A

* to.push(xelem);
}

} dangling pointer

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {..}

fn caller() A
let mut vec = ..;
pUSh_all(&Vec , =omt

| T

shared reference

Error: cannot have both shared and
mutable reference at same time

A &mut T is the only way to access
the memory it points at

let mut vec = Vec::new();

for i in 0

.. vec.len() {
* let elem: &int = &vecli];

<— Error: vec[i] is borrowed,

cannot mutate

vec.push(..); <— OK. loan expired.

BOrrows restrict access to
the original path for their
duration.

&

no writes, N0 moves

&mut

no access at all

Concurrency

n. several computations executing simultaneously, and
potentially interacting with each other.

Rust’s vision for concurrency

Originally: only isolated message passing

Now: libraries for many paradigms,

using ownership to avoid footguns,
guaranteeing no data races

Data race

Two unsynchronized threads
accessing same data
where at least one writes.

K *s, Sound familiar?

0.‘ “‘

& ° ° o
* Aliasing .
o B
o .
“ o ..

. Mutation

0‘. “g
&

>
& o
W FTTT LA

No ordering

Data race

No data races =
No accidentally-shared state.

All sharing is explicit!

xsome value = 5;
return xsome_value == 5; // ALWAYS true

| Principles of Compiler Design

| Principles of Compiler Design

Messaging

(ownership)

fn parent() { move || {

*let (tx, rx) = channel(); let m = Vec::new();
spavn (ROVENIINEEE ;
let m = rx.recv(); ..send(m);
I3 I3

N
N

——

Locked mutable access

(ownership, borrowing)

fn sync_inc(mutex: &Mutex<int>) {
let mut data = mutex. lock();
xdata += 1;

}

Destructor releases lock
Yields a mutable reference to data

Destructor runs here, releasing lock

Disjoint, scoped access

(borrowing)

fn gsort(vec: &mut [int]) {
if vec.len() <= 1 { return; }
let pivot = vecl[random(vec.len())];
let mid = vec.partition(vec, pivot);
let (less, greater) = vec.split_at_mut(mid);
gsort(less);
gqsort(greater);

let vec: &mut [int] = ..;

.

less greater

fn split_at _mut(&mut self, mid: usize)
-> (&mut [T], & mut [T])

fn parallel_gsort(vec: &mut [int]) {
if vec.len() <= 1 { return; }
let pivot = vecl[random(vec.len())];
let mid = vec.partition(vec, pivot);

parallel::join(

|| parallel_qsort(greater)
);
let vec: &mut [int] =

‘.-lllllIIIIllllllllllllllll--.___
ElENER IR
v'

O

less greater

Static checking for thread safety

fn send<T: Send>(&self, t: T)

\

Only “sendable” types

Arc<Vec<int>>: Send
Rc<Vec<int>> : !Send

And beyond...

Concurrency is an area of active development.

Either already have or have plans for:
- Atomic primitives

- Non-blocking queues

- Concurrent hashtables

- Lightweight thread pools

- Futures

- CILK-style fork-join concurrency

- etc.

Always data-race free

Unsafe

adj. not safe; hazardous

Safe abstractions

fn something_safe(..) {

unsafe { \
h \ Validates input, etc.

Trust me.

Useful for:
Bending mutation/aliasing rules (split_at mut)
Interfacing with C code

Ownership enables safe abstraction boundaries.

Community

n. A feeling of fellowship with others sharing similar goals.

“Ihe Rust community seems to be
bopulated entirely by human beings.
have no Idea how this was done.’

— Jamie Brandon

It takes a village...

Community focus from the start:

Rust 1.0 had > 1,000 contributors
Welcoming, pragmatic culture

Developed “in the open”
Much iteration; humility is key!

Clear leadership
Mix of academic and engineering backgrounds
“Keepers of the vision”

RFC: associated items and multidispatch #7195

(WY CIGEGE alexcrichton merged 5 commits into rust-lang:master from aturon:associated-items on Sep 16, 2014

™ Conversation 69 -0- Commits 5 Files changed 1

aturon commented on Aug 12, 2014

This RFC extends traits with associated items, which make generic programming
more convenient, scalable, and powerful. In particular, traits will consist of a
set of methods, together with:

¢ Associated functions (already present as "static" functions)
¢ Associated statics

e Associated types

e Associated lifetimes

These additions make it much easier to group together a set of related types,
functions, and constants into a single package.

This RFC also provides a mechanism for multidispatch traits, where the impl
is selected based on multiple types. The connection to associated items will
become clear in the detailed text below.

Rendered view

Articulating the vision

Memory safety garbage collection
Concurrency data races

Abstraction without overhead
Stability stagnation

Hack without fear!

M

PN
TS

N
A\

