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Why streams and why databases?

Things you may care about

Overview

How popular stream systems work

How we deal with streams in Druid
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Why streams?

e Real-time monitoring
e Real-time response
e Shorter feedback loops

e Better user experience



Why stream processing?

e Original streams are not exactly what we want

e Common things to want
o Enhancement
o Session reconstruction (and other joins)

o Load into databases



Why databases?

e Lots of questions to ask
e Streaming through raw data, for every question, is slow

e Fasterto load a derivative into a database, query it there

o DB strengths: ad-hoc search, aggregation, key lookup

o DB weaknesses: joining big distributed tables, joining external data



Stream operations



Basic operations

— INSERT INTO mydata VALUES ...



Grouping operations
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Grouping operations

e Tricky!
e Data points for a window may come in “late”
e Windows may be aligned (e.g. aggregates)

e Windows may be unaligned (e.g. sessions)



Requirements



Requirements

e Correctness

e Latency

e C(Cost

e (Thanks, Akidau et. al)



Correctness

e Want accurate reflection of reality



Correctness

e Message processing guarantees
o None
o At most once
o Atleastonce

o Exactly once



Correctness

e Window emitting guarantees

o Wait for “enough” data before emitting, and emit once

o Emit periodic updates



Latency

Very low latency “Low” latency High latency
subsecond seconds — minutes hours — days



Data pipelines



Goals

e Low-latency results
e Strong correctness guarantees
e Ability to do backfills



Why backfills?

e Bugs in processing code
e Need to restate existing data

e Limitations of some current streaming software



Backfills: Lambda

e Hybrid batch/realtime a.k.a. “lambda architecture”
e Backfills automated or on-demand
e Pros: Can achieve goals with a wide variety of OSS

e Cons: Operations and development are complex



Backfills: Lambda




Backfills: Lambda

e Batch technologies
o Hadoop Map/Reduce
o Spark

e Streaming technologies

o Samza
o Storm

o Spark Streaming



Backfills: Lambda

e Software exists to simplify development
o Summingbird
o Google Cloud Dataflow

o Starfire (internal tool)



Backfills: Stream replay

e Stream replay a.k.a. “kappa architecture”
e Backfills on demand
e Simpler development and operations

e Workable if stream processing guarantees are strong enough



Side note on batch processing

e Stream and batch processing not too different on unbounded datasets

e Batch processors must still deal with late data



Streaming systems
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Kafka: API

e Producer: Send message to a (topic, partition)

e Consumer: Read messages from a (topic, partition)
e Very low latency

e (Can do simple operations directly with the Kafka API

e More complex processing is easier with a “real” stream processor



Kafka: API

e Possible to integrate closely, and efficiently, with databases

e Not an accident



Kafka: Guarantees

e Producer: At-least-once, if configured appropriately

e Consumer

o At-least-once straightforward with high-level consumer

o Exactly-once (from Kafka data!) can be done with more work



Kafka: Guarantees

e Exactly-once strategies

e Naturally unique message IDs

o Must assign outside of Kafka

o De-duplicate messages while consuming

o Must make sure to keep around enough de-duplication data
e Single-writer-per-partition

o Duplicate messages will be adjacent; ignore them



Spout

Spout

http://storm.apache.org/tutorial.html




e Messages acked at spout when fully processed

e Spouts typically checkpoint after acks
e At-least-once if spouts are able to replay
e Exactly-once with idempotent operations

e No innate concept of state



Storm / Trident

e Does have concept of state

e Messages grouped into batches

e Each batch given a transaction id (txid)

e Txids globally ordered, meant to be stored in DB
e Skip DB update for stale txids

e Coordination overhead



Samza
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Samza

e Periodically flush output and checkpoint Kafka offsets
e At-least-once

e Exactly-once with idempotent operations



Druid



Druid

e Open source column store

e Designed for fast filtering and aggregations
e Unique optimizations for event data

e Data partitioning/sharding first done on time

e Datais partitioned into defined time buckets (hour/day/etc)



Druid Segments
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Rollup on ingestion

timestamp publisher advertiser gender country click revenue
2011-01-01T01:01:35Z bieberfever.com google.com Male USA 0 0.65
2011-01-01T01:03:63Z bieberfever.com google.com Male USA 0 0.62
2011-01-01T01:04:51Z bieberfever.com google.com Male USA 1 0.45
2011-01-01T01:00:00Z wultratrimfast.com google.com Female UK 0 0.87

2011-01-01T02:00:00Z wultratrimfast.com google.com Female UK .99
2011-01-01T02:00:00Z wultratrimfast.com google.com Female UK 1 1.53

(@]
(@]



Rollup on ingestion

timestamp publisher advertiser gender country impressions clicks revenue
2011-01-01T01:00:00Z wultratrimfast.com google.com Male USA 1800 25 15.70
2011-01-01T01:00:00Z bieberfever.com google.com Male USA 2912 42 29.18
2011-01-01T02:00:00Z wultratrimfast.com google.com Male UK 1953 17 17.31

2011-01-01T02:00:00Z Dbieberfever.com google.com Male UK 3194 170 34.01



Druid Segments

e Can be built from streams

e |Immutable once built: no contention between reads and writes
e Simple parallelization: one thread scans one segment

e Streaming append + atomic batch replace

e Want to avoid having a unique key for messages



Druid: Batch ingestion

e Exactly-once, from Hadoop

e Uses atomic replacement



Druid: Stream ingestion

. {time: 1440000000000, user: alice, page: /foo, count: 2} §

Events {time: 1440000000000, user: alice, page: /bar, count: 1}}
i {time: 1440000000000, user: bob, page: /bar, count: 1}§

Row Buffer
in-memory
limited in size
grouped on dimensions



Druid: Stream ingestion

Events ssswmessumefly

§ [144e10, 144e10, 144e10] §
¢ [alice, alice, bob] §
§ [/foo, /bar, /bar]
02, 1, 1] | ]

Column Store

memory-mapped
persisted async from row buffer




Druid: Stream ingestion

i {time: 1450000000000, user: carol, page: /baz, count: 1} -

Events seeemmmemnily

Reads
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and all column stores

f [144e10, 144e10, 144el0Q] 4
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Druid: Stream ingestion

Final persist
all data now in column stores
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Druid: Stream ingestion

I [144e10, 144el0, 144el0] § f [145e10]
 [alice, alice, bob] t [carol]
{ [/foo, /bar, /bar] { [/baz] i
§2, 1, 1] ] § [1] o f

Merge
all data in a single segment

queried along with all existing data
target size 500MB-|GB
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Druid: Stream push
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Druid: Kafka pull
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Druid: Kafka pull (current)

Events swwronily % s <

Kafka Firehose

uses Kafka high-level consumer
(+) commit offsets when persisted to disk
(+) easy to scale ingestion up and down

(-) not HA
(-) can generate duplicates during rebalances
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Druid: Kafka pull (next-gen)

Events iy % s g

New Kafka Ingestion
uses Kafka simple or new consumer
(+) store offsets along with Druid segments
(+) easy to scale ingestion up and down
(+) HA— control over who consumes what
(+) no duplicates during rebalances
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Do try this at home



Software

e Druid - druid.io - @druidio
e Kafka - kafka.apache.org - @apachekafka

e Samza- samza.apache.org - @samzastream

e Storm - storm.apache.org - @stormprocessor




IELCEVENE

e Databases and streams are best friends
e Consider latency and correctness in system design
e Know the guarantees provided by your tools

e Have a backfill strategy if you're interested in historical data



Thanks!

@implydata
@druidio
@gianmerlino

imply.io
druid.io



