Connecting streams and databases

Gian Merlino
Druid committer « Cofounder @ Imply

Why streams and why databases?

Things you may care about

Overview

How popular stream systems work

How we deal with streams in Druid

Stream processing

OME ",
B\ ff@'?

H
=

JOIN TODAY!

Cards,
Phones

rut SPIDER =

Streams

Stream processing

0e®e
®e0o

Streams

Stream processing

0e®e
®e0o

Streams Actions

Stream processing

0e®e
®e0o

Streams You

Stream processing

AgApg
® ! (P - Stream 5
Apga] processor

Streams Actions

Stream processing

~ Y- 5 i dos
ream

.A'. A'. —> [processor J —> *%%*%"3

@00y YA A @A

Streams Derived
Streams

Stream processing

AgApg —
® ! (P - Stream 5
Agag processor Database

Streams

Stream processing

0a®o Stream
A'. Ag — [e —> Database <
®e0g

Streams You

Why streams?

e Real-time monitoring
e Real-time response
e Shorter feedback loops

e Better user experience

Why stream processing?

e Original streams are not exactly what we want

e Common things to want
o Enhancement
o Session reconstruction (and other joins)

o Load into databases

Why databases?

e Lots of questions to ask
e Streaming through raw data, for every question, is slow

e Fasterto load a derivative into a database, query it there

o DB strengths: ad-hoc search, aggregation, key lookup

o DB weaknesses: joining big distributed tables, joining external data

Stream operations

Basic operations

— INSERT INTO mydata VALUES ...

Grouping operations

.A'.A. > HEAA
HANm Q0 e
®e0go 00 00

GroupByKey

Grouping operations

e Tricky!
e Data points for a window may come in “late”
e Windows may be aligned (e.g. aggregates)

e Windows may be unaligned (e.g. sessions)

Requirements

Requirements

e Correctness

e Latency

e C(Cost

e (Thanks, Akidau et. al)

Correctness

e Want accurate reflection of reality

Correctness

e Message processing guarantees
o None
o At most once
o Atleastonce

o Exactly once

Correctness

e Window emitting guarantees

o Wait for “enough” data before emitting, and emit once

o Emit periodic updates

Latency

Very low latency “Low” latency High latency
subsecond seconds — minutes hours — days

Data pipelines

Goals

e Low-latency results
e Strong correctness guarantees
e Ability to do backfills

Why backfills?

e Bugs in processing code
e Need to restate existing data

e Limitations of some current streaming software

Backfills: Lambda

e Hybrid batch/realtime a.k.a. “lambda architecture”
e Backfills automated or on-demand
e Pros: Can achieve goals with a wide variety of OSS

e Cons: Operations and development are complex

Backfills: Lambda

Backfills: Lambda

e Batch technologies
o Hadoop Map/Reduce
o Spark

e Streaming technologies

o Samza
o Storm

o Spark Streaming

Backfills: Lambda

e Software exists to simplify development
o Summingbird
o Google Cloud Dataflow

o Starfire (internal tool)

Backfills: Stream replay

e Stream replay a.k.a. “kappa architecture”
e Backfills on demand
e Simpler development and operations

e Workable if stream processing guarantees are strong enough

Side note on batch processing

e Stream and batch processing not too different on unbounded datasets

e Batch processors must still deal with late data

Streaming systems

producer producer producer
kafka
cluster

consumer COnsumer consumer

Anatomy of a Topic

Partition
Q

=
—r
M ==

Partition
1

Partition
2

- Writes

= Mew

Oid

http://kafka.apache.org/documentation.html

Kafka: API

e Producer: Send message to a (topic, partition)

e Consumer: Read messages from a (topic, partition)
e Very low latency

e (Can do simple operations directly with the Kafka API

e More complex processing is easier with a “real” stream processor

Kafka: API

e Possible to integrate closely, and efficiently, with databases

e Not an accident

Kafka: Guarantees

e Producer: At-least-once, if configured appropriately

e Consumer

o At-least-once straightforward with high-level consumer

o Exactly-once (from Kafka data!) can be done with more work

Kafka: Guarantees

e Exactly-once strategies

e Naturally unique message IDs

o Must assign outside of Kafka

o De-duplicate messages while consuming

o Must make sure to keep around enough de-duplication data
e Single-writer-per-partition

o Duplicate messages will be adjacent; ignore them

Spout

Spout

http://storm.apache.org/tutorial.html

e Messages acked at spout when fully processed

e Spouts typically checkpoint after acks
e At-least-once if spouts are able to replay
e Exactly-once with idempotent operations

e No innate concept of state

Storm / Trident

e Does have concept of state

e Messages grouped into batches

e Each batch given a transaction id (txid)

e Txids globally ordered, meant to be stored in DB
e Skip DB update for stale txids

e Coordination overhead

Samza

Samza Job
Input Input
Stra&ller Etreai'n B
0 0/1
70 N
1 1
i 1
]
V| Task 1 Task2 |1
1
I Y 4 7 I
Lo e Nl S S
\2&/ @ Job 3
Output I
Stream C Stream F
/_\——__/—

http://samza.apache.org/learn/documentation/0.9/introduction/concepts.htmi

Samza

e Periodically flush output and checkpoint Kafka offsets
e At-least-once

e Exactly-once with idempotent operations

Druid

Druid

e Open source column store

e Designed for fast filtering and aggregations
e Unique optimizations for event data

e Data partitioning/sharding first done on time

e Datais partitioned into defined time buckets (hour/day/etc)

Druid Segments

Timestamp

Page

Timestamp

Page

Views

2015-01-01T00

p1

2015-01-01T00

p1

2015-01-01T01

p2

2015-01-01T01

p2

Timestamp

Page

2015-01-02T05

p3

2015-01-02T05

p3

2015-01-02T07

p4

2015-01-02T07

p4

2015-01-03T05

pS

2015-01-03T07

p6

Timestamp

Page

2015-01-03T05

p5

2015-01-03T07

p6

Partition by time

Segment_2015-01-01/2014-01-02

Segment_2015-01-02/2014-01-03

Segment _2015-01-03/2014-01-04

Rollup on ingestion

timestamp publisher advertiser gender country click revenue
2011-01-01T01:01:35Z bieberfever.com google.com Male USA 0 0.65
2011-01-01T01:03:63Z bieberfever.com google.com Male USA 0 0.62
2011-01-01T01:04:51Z bieberfever.com google.com Male USA 1 0.45
2011-01-01T01:00:00Z wultratrimfast.com google.com Female UK 0 0.87

2011-01-01T02:00:00Z wultratrimfast.com google.com Female UK .99
2011-01-01T02:00:00Z wultratrimfast.com google.com Female UK 1 1.53

(@]
(@]

Rollup on ingestion

timestamp publisher advertiser gender country impressions clicks revenue
2011-01-01T01:00:00Z wultratrimfast.com google.com Male USA 1800 25 15.70
2011-01-01T01:00:00Z bieberfever.com google.com Male USA 2912 42 29.18
2011-01-01T02:00:00Z wultratrimfast.com google.com Male UK 1953 17 17.31

2011-01-01T02:00:00Z Dbieberfever.com google.com Male UK 3194 170 34.01

Druid Segments

e Can be built from streams

e |Immutable once built: no contention between reads and writes
e Simple parallelization: one thread scans one segment

e Streaming append + atomic batch replace

e Want to avoid having a unique key for messages

Druid: Batch ingestion

e Exactly-once, from Hadoop

e Uses atomic replacement

Druid: Stream ingestion

. {time: 1440000000000, user: alice, page: /foo, count: 2} §

Events {time: 1440000000000, user: alice, page: /bar, count: 1}}
i {time: 1440000000000, user: bob, page: /bar, count: 1}§

Row Buffer
in-memory
limited in size
grouped on dimensions

Druid: Stream ingestion

Events ssswmessumefly

§ [144e10, 144e10, 144e10] §
¢ [alice, alice, bob] §
§ [/foo, /bar, /bar]
02, 1, 1] |]

Column Store

memory-mapped
persisted async from row buffer

Druid: Stream ingestion

i {time: 1450000000000, user: carol, page: /baz, count: 1} -

Events seeemmmemnily

Reads

1 R use row buffer

and all column stores

f [144e10, 144e10, 144el0Q] 4
¢ [alice, alice, bob]
{ [/foo, /bar, /bar]
[2., 1 > l]. |

Druid: Stream ingestion

Final persist
all data now in column stores

¢ [carol]

§ [144€10, 144el0, 144e10] §
i [alice, alice, bob]
{[/foo, /bar, /bar]
e

! [/baz] £

Druid: Stream ingestion

I [144e10, 144el0, 144el0] § f [145e10]
 [alice, alice, bob] t [carol]
{ [/foo, /bar, /bar] { [/baz] i
§2, 1, 1]] § [1] o f

Merge
all data in a single segment

queried along with all existing data
target size 500MB-|GB

 [144e10, 14410, 14410, 145e10] §
¥ [alice, alice, bob, carol] :
{[/foo, /bar, /bar, /baz] 1
g2, 1, 1, 11 \ "

Druid: Stream push

é;)"

Streaming

"y

Any
Stream

Druid-aware
embedded
client

(tranquility)

0/ \

DRUID REAL-TIME INGESTION

DRUID REAL-TIME INGESTION

e I "
t i)
" —
Task #0a Task #0b
DRUID REAL-TIME INGESTION DRUID REAL-TIME INGESTION
s e
t 1
—a -
Task #la Task #1b

Druid: Kafka pull

Partition #1|

Partition #2

Partition #3

% Partition #0

Task #0

Task #|

Druid: Kafka pull (current)

Events swwronily % s <

Kafka Firehose

uses Kafka high-level consumer
(+) commit offsets when persisted to disk
(+) easy to scale ingestion up and down

(-) not HA
(-) can generate duplicates during rebalances

High Level
Consumer

Kafka
Firehose

¥

[DRUID REAL-TIME INGESTION
-
t
s

Task #N

Druid: Kafka pull (next-gen)

Events iy % s g

New Kafka Ingestion
uses Kafka simple or new consumer
(+) store offsets along with Druid segments
(+) easy to scale ingestion up and down
(+) HA— control over who consumes what
(+) no duplicates during rebalances

Simple/New
Consumer

New Kafka
Ingestion

¥

[ORIID REAL TIME INGESTION

Task #N

Do try this at home

Software

e Druid - druid.io - @druidio
e Kafka - kafka.apache.org - @apachekafka

e Samza- samza.apache.org - @samzastream

e Storm - storm.apache.org - @stormprocessor

IELCEVENE

e Databases and streams are best friends
e Consider latency and correctness in system design
e Know the guarantees provided by your tools

e Have a backfill strategy if you're interested in historical data

Thanks!

@implydata
@druidio
@gianmerlino

imply.io
druid.io

