
DIY	Production	Monitoring



About	Me

	 Co-founder	–	Takipi,	JVM	Production	Debugging.	

	 Director,	AutoCAD	Web	&	Mobile.	

	 Software	Architect	at	IAI	Aerospace.	

	 Coding	for	the	past	16	years	-	C++,	Delphi,	.NET,	Java.	

	 Focus	on	real-time,	scalable	systems.	

	 Blogs	at	blog.takipi.com	

	 	 	

	

http://www.takipiblog.com


Java	Agents

• An	advanced	technique	for	instrumenting	code	dynamically.	

• The	foundation	of	modern	profiling	/	debugging	tools.	

• Two	types	of	agents:		Java	and	Native.	

• Pros:	extremely	powerful	technique	to	collect	state	from	a	live	app.		

• Cons:	requires	knowledge	of	creating	verifiable	bytecode.

http://www.takipiblog.com/double-agent-java-vs-native-agents/


Agent	Types

• Java	agents	are	written	in	Java.	Have	access	to	the	Instrumentation	BCI	API.	

• Native	agents	–	written	in	C++.		

• Have	access	to	JVMTI	–	the	JVM’s	low-level	set	of	APIs	and	capabilities.	

– JIT	compilation,	Garbage	Collection,	Monitor	acquisition,	Exception	callbacks,	..	

• More	complex	to	write.		

• Platform	dependent.

http://www.takipiblog.com/how-to-write-your-own-java-scala-debugger/


Java	Profiling	Agents

github.com/takipi/profiling-agent

https://github.com/takipi/debugagent


Thread	Names

• Thread	name	is	a	mutable	property.	

• Can	be	set	to	hold	transaction	specific	state.	

• Some	frameworks	(e.g.	EJB)	don’t	like	that.	

• Can	be	super	helpful	when	debugging	in	tandem	with	jstack.



Thread	Names	(2)

For	example: 

Thread.currentThread().setName(  
    Context + TID + Params + current Time, ...);	

Before:  

“pool-1-thread-1″ #17 prio=5 os_prio=31 tid=0x00007f9d620c9800 
nid=0x6d03 in Object.wait() [0x000000013ebcc000	

After:	
”Queue Processing Thread, MessageID: AB5CAD, type: AnalyzeGraph, 
queue: ACTIVE_PROD, Transaction_ID: 5678956, Start Time: 
10/8/2014 18:34″ #17 prio=5 os_prio=31 tid=0x00007f9d620c9800 
nid=0x6d03 in Object.wait() [0x000000013ebcc000]





Modern	Stacks	-	Java	8



Modern	Stacks	-	Scala




