
How Slack Works
Keith Adams

kma@slack-corp.com @keithmadams facebook.com/kma

What is

Slack?

What is

Slack?
Voice Calls! Platform! Something about Bots!!

Persistent
Group

Messaging

But first it was a

Service

In this talk

● How Slack works today
➞ Application logic
➞ Persistence
➞ Real-time messaging
➞ Deferring work for later

● Problems
● What we’re doing about them

Also in this talk

● Flaws
● Challenges
● Mistakes
● Dead-ends
● Future directions

Slack Scale

● 4M DAU, 5.8M WAU
Peak simultaneous connected: 2.5M

● > 2H / weekday for each active user
> 10H / weekday connected

● Half of DAU outside US

Slack House Style

● Conservative technical taste
Most supporting technologies are >10 years old

● Willing to write a little code
Choose low coupling, fitness-to-purpose over DRY

● Minimalism
Choose something we already operate over something new and tailor-made
Shallow, transparent stack of abstractions

Cartoon Architecture of Slack

MySQL

Job
Queue

Message
Server

WebApp

Case Study: Login and Receive Messages

slack.com

 POST /api/rtm.start?token=xoxo--&...

Slack’s webapp codebase

● PHP monolith of app logic
<1MLoC

● Scaled-out LAMP stack app
Memcache wrapped around sharded MySQL

● Recently migrated to HHVM
Performance, hacklang

http://hacklang.org/

World’s shortest PHP-at-Slack FAQ

● Q: I hear/believe/have experienced PHP to be terrible.
A: It sort of is, but it also works well.

● Q: I’m skeptical.
A: You’re in good company! Check out this blog post. But we should probably
get on with the talk at hand ...

● Q: Sounds good.
A: Right-o.

https://slack.engineering/taking-php-seriously-cf7a60065329#.nl3hnb42y

Login and Receive Messages: the “mains”

slack.com main0

main1

SELECT db_shard FROM teams
WHERE domain = %domain

Login and Receive Messages: the shards

slack.com
main0

main1

main0

main1

main0

main1

main0

main1

Shard123
a

Shard123
b

SELECT * FROM channels
WHERE team_id = 711 ...

MySQL Shards

● Source of truth for most customer data
Teams, users, channels, messages, comments, emoji, ...

● Replication across two DCs
Available for 1-DC failure

● Sharded by team
For performance, fault isolation, and scalability

Why MySQL?

● Many, many thousands of server-years of working
● The relational model is a good discipline
● Experience
● Tooling

Not because of ACID, though

Master-Master Replication

www1 Shard123
a

Shard123
b

www17

MMR Complications

● Choosing A in CAP terms
● Conflicts are possible

➞ Most resolved automatically
➞ Some manually, by operator action(!)

● INSERT ON DUPLICATE KEY UPDATE …
● Partitioning by team saves us

➞ Team writes cannot overlap
➞ Even teams use “left” head, odd teams use “right” head

Case Study: Login and Receive Messages

slack.com
{
 “ok”: true,
 “url”:
“wss:\/\/ms9.slack-msgs.com\/websocket
\/7I5yBpcvk”,
 …
}

Rtm.start payload

● Rtm.start returns an image of the whole team
● Architecture of clients

➞ Eventually consistent snapshot of whole team
➞ Updates trickle in through the web socket

● Guarantees responsive clients
● ...once connection is established

Cartoon Architecture of Slack

MySQL

Job
Queue

Message
Server

WebApp

Persist,
broadcast
messages

Message Delivery

Message
Server

WebApp

Wrinkles in Message Server

● Race between rtm.start and connection to MS
➞ Event log mechanism

● Glitches, delays, net partitions while persisting
➞ In-memory queue of pending sends
➞ Queue depth sensitive barometer of system health

● Most messages are presence

Link unfurling

Deferring Work

Search indexing

Exports/Imports

Job Queue
(Redis)

WebApp

Job Workers

Putting it all together

mains

shards

Message
Server

WebApp

Things missing from the cartoon

● Memcache wrapped around many DB accesses
➞ Case-by-case
➞ Manual

● Computed data service (CDS)
➞ Provides ML models via Thrift interface

● Rate-limiting around critical services
● Search!

➞ Solr
➞ Team-partitioned
➞ fed from job queue workers

Slack Today: The Good Parts

● Team-partitioning
➞ Easy scaling to lots of teams
➞ Isolates failures and perf problems
➞ Makes customer complaints easy to field
➞ Natural fit for a paid product

● Per-team Message Server
➞ Low-latency broadcasts

Some Hard Cases

Hard scenarios

● Mains failures
● Rtm.start on large teams
● Mass reconnects

Mains failure

● 1 master fails, partner takes over

● If both fail?
➞ Many users can proceed via memcache
➞ For the rest Slack is down
➞ Quite possible if failure was load-induced

Rtm.start for large teams

● Returns image of entire team

● Channel membership is O(n2) for n users

Mass reconnects

● A large team loses, then regains, office Internet connectivity

● n users perform O(n2) rtm.start operations

● Can ‘melt’ the team shard

What are we going to

Do
about it?

Scale-out mains

● Replace mains spof
● With what? We’re not sure yet
● Kicking the tires carefully on a scary change

Rtm.start for large teams

● Incremental work
➞ Current p95,p99: 221ms, 660ms

● Core problem: channel membership is O(n2)
● Change APIs so clients can load channel members lazily
● Much harder than it sounds!

Mass reconnects

● Introducing flannel

● Application-level edge cache

Pre-Flannel

Message Delivery

Message
Server

WebApp

Message
Server

Flannel status

● On for a few teams

● Rolling out to you soon with any luck

Phew

Stuff I had to leave out

● Lots of client tech!
● Voice
● Backups
● Data warehouse
● Search
● Deploying code
● Monitoring and alerting

Wrapping up

● Sketch of how Slack works
➞ Application Logic
➞ Persistence
➞ Real-time messaging
➞ Asynchronous Work

● Problems
● What we’re doing about them

There is a lot left to do
slack.com/jobs

...

Deployable Message Server

● Channel-sharded message bus

● Flannel discovers Channel servers via Consul
➞ Scatters user writes
➞ Gathers channel reads

● Failures do not need reconnects

