
L O A D B A L A N C I N G
I S

I M P O S S I B L E

SLIDE

LOAD BALANCING IS IMPOSSIBLE

Tyler McMullen

tyler@fastly.com

@tbmcmullen

2

WHAT IS LOAD BALANCING?

[DIAGRAM DESCRIBING LOAD BALANCING]

[ALLEGORY DESCRIBING LOAD BALANCING]

SLIDELOAD BALANCING IS IMPOSSIBLE 6

Abstraction Balancing LoadFailure

Treat many servers as one
Single entry point

Simplification

Transparent failover
Recover seamlessly

Simplification
Spread the load efficiently across servers

Why Load Balance?

Three major reasons. The least of which is balancing load.

R A N D O M

T H E I N G L O R I O U S D E F A U LT

A N D B A N E O F M Y E X I S T E N C E

SLIDE

LOAD BALANCING IS IMPOSSIBLE

What’s good about
random?

8

• Simplicity

• Few edge cases

• Easy failover

• Works identically when distributed

SLIDE

LOAD BALANCING IS IMPOSSIBLE

What’s bad about
random?

9

• Latency
• Especially long-tail latency
• Useable capacity

B A L L S - I N T O - B I N S

I f you throw m bal ls into n b ins,
what is the maximum load

of any one bin?

import numpy as np
import numpy.random as nr

n = 8 # number of servers
m = 1000 # number of requests

bins = [0] * n

for chosen_bin in nr.randint(0, n, m):
 bins[chosen_bin] += 1

print bins

[129, 100, 134, 113, 117, 136, 148, 123]

import numpy as np
import numpy.random as nr

n = 8 # number of servers
m = 1000 # number of requests

bins = [0] * n

for weight in nr.uniform(0, 2, m):
 chosen_bin = nr.randint(0, n)
 bins[chosen_bin] += weight

print bins

[133.1, 133.9, 144.7, 124.1, 102.9, 125.4, 114.2, 121.3]

How do you model
request latency?

What do

Erlang
and

getting kicked by a horse
have in common?

POISSON PROCESS

WHY IS THAT A PROBLEM?

50ms

Even if your application has perfect constant response time

... It doesn’t.

Log-normal Distribution

50th: 0.6
75th: 1.2 95th: 3.1

99th: 6.0

99.9th: 14.1

MEAN: 1.0

User-Generated Content Social

Ad-serving Photos

mu = 0.0
sigma = 1.15
lognorm_mean = math.e ** (mu + sigma ** 2 / 2)

desired_mean = 1.0

def normalize(value):
 return value / lognorm_mean * desired_mean

for weight in nr.lognormal(mu, sigma, m):
 chosen_bin = nr.randint(0, n)
 bins[chosen_bin] += normalize(weight)

[128.7, 116.7, 136.1, 153.1, 98.2, 89.1, 125.4, 130.4]

mu = 0.0
sigma = 1.15
lognorm_mean = math.e ** (mu + sigma ** 2 / 2)

desired_mean = 1.0
baseline = 0.05

def normalize(value):
 return (value / lognorm_mean
 * (desired_mean - baseline)
 + baseline)

for weight in nr.lognormal(mu, sigma, m):
 chosen_bin = nr.randint(0, n)
 bins[chosen_bin] += normalize(weight)

[100.7, 137.5, 134.3, 126.2, 113.5, 175.7, 101.6, 113.7]

THIS IS WHY

PERFECTION

IS IMPOSSIBLE

._.

1

2

4

WHAT EFFECT DOES IT HAVE?

Random simulation
Actual distribution

The probability of a single resource request avoiding the 99th percentile is 99%.

The probability of all N resource requests in a page avoiding
the 99th percentile is (99% ^ N).

99% ^ 69 = 49.9%

SO WHAT DO WE DO ABOUT IT?

Random simulation
JSQ simulation

Join-shortest-queue

L E T ’ S T H R O W A W R E N C H I N T O T H I S . . .

D I S T R I B U T E D L O A D
B A L A N C I N G

A N D W H Y I T M A K E S E V E R Y T H I N G H A R D E R

DISTRIBUTED RANDOM IS EXACTLY THE SAME

DISTRIBUTED JOIN-SHORTEST-QUEUE IS A NIGHTMARE

mu = 0.0
sigma = 1.15
lognorm_mean = math.e ** (mu + sigma ** 2 / 2)

desired_mean = 1.0
baseline = 0.05

def normalize(value):
 return (value / lognorm_mean
 * (desired_mean - baseline)
 + baseline)

for weight in nr.lognormal(mu, sigma, m):
 chosen_bin = nr.randint(0, n)
 bins[chosen_bin] += normalize(weight)

[100.7, 137.5, 134.3, 126.2, 113.5, 175.7, 101.6, 113.7]

mu = 0.0
sigma = 1.15
lognorm_mean = math.e ** (mu + sigma ** 2 / 2)

desired_mean = 1.0
baseline = 0.05

def normalize(value):
 return (value / lognorm_mean
 * (desired_mean - baseline)
 + baseline)

for weight in nr.lognormal(mu, sigma, m):
 a = nr.randint(0, n)
 b = nr.randint(0, n)
 chosen_bin = a if bins[a] < bins[b] else b
 bins[chosen_bin] += normalize(weight)

[130.5, 131.7, 129.7, 132.0, 131.3, 133.2, 129.9, 132.6]

[100.7, 137.5, 134.3, 126.2, 113.5, 175.7, 101.6, 113.7]

[130.5, 131.7, 129.7, 132.0, 131.3, 133.2, 129.9, 132.6]

STANDARD DEVIATION: 1.18

STANDARD DEVIATION: 22.9

Random simulation
JSQ simulation
Randomized JSQ simulation

A N O T H E R C R A Z Y I D E A

WRAP UP

SLIDE

LOAD BALANCING IS IMPOSSIBLE

THANKS BYE

tyler@fastly.com

@tbmcmullen

58

