LOAD BALANCING

1S

IMPOSSIBLE

Tyler McMullen

tyler@fastly.com

@tbmcmullen

WHAT IS LOAD BALANCING?

[DIAGRAM DESCRIBING LOAD BALANCING]

'ALLEGORY DESCRIBING LOAD BALANCING]

LOAD BALANCING IS IMPOSSIBLE 6 SLIDE

Why Load Balance?

Three major reasons. The least of which is balancing load.

Abstraction Failure Balancing Load
Treat many servers as one Transparent failover
Single entry point Recover seamlessly Spread the load efficiently across servers

Simplification Simplification

RANDOM

THE INGLORIOUS DEFAULT

AND BANE OF MY EXISTENCE

LOAD BALANCING IS IMPOSSIBLE

- Simplicity

What’s good about - Few edge cases
random? - Easy failover

- Works identically when distributed

- Latency

What’s bad about

- Especially long-tail latency

random?

- Useable capacity

9 SLIDE

BALLS-INTO-BINS

If you throw m balls into n bins,
what is the maximum load
of any one bin?

Theorem 1. Let M be the random wvariable that counts the maximum number

of polylog(n) <m <Lnlogn,

of m = c-nlogn for some constant c,

if nlogn < m < n - polylog(n),

1 log(2) n
a 2logn

), if m>n - (logn)°

The paper is organized as follows: in § 2 we give a brief overview of the first
and second moment method, in § 3 we show how to apply this method within
the balls-into-bins scenario and obtain in § 4 the logoﬁ) gn(l + o(1)) bound for
m = n. In § 5 we then present some more general tail bounds for Binomial
random variables and combine them with the first and second moment method

to obtain a proof of Theorem 1.

import numpy as np
import numpy.random as nr

n=8 # number of servers
m = 1000 # number of requests

bins =[0] " n

for chosen_bin in nr.randint(0, n, m):
bins[chosen_bin] += 1

print bins

129, 100, 134, 113, 117, 136, 148, 123]

iImport numpy as np
import numpy.random as nr

n=8 # number of servers
m = 1000 # number of requests

bins = [0] " n
for weight in nr.uniform(0, 2, m):
chosen_bin = nr.randint(0, n)

bins[chosen_bin] += weight

print bins

[133.1, 133.9, 144.7,124.1, 102.9, 125.4, 114.2, 121.3]

How do you model
request latency?

What do

Erlang

and

getting kicked by a horse

have In common?

POISSON PROCESS

WHY IS THAT A PROBLEM?

50ms

Even if your application has perfect constant response time

... It doesn't.

25

15

10

Log-normal Distribution

50th: 0.6

MEAN: 1.0

751h: 1.

99.9th: 4.1

O5th: 3.‘

2000

4000

6000

8000

10000

14

12

10

40

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

User-Generated Content

—

_

2000 4000 6000 8000 10000 12000 14000
Ad-serving
~ N - _
5000 10000 15000 20000

40

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

16

14

12

10

_

Social

0 2000 4000 6000 8000 10000 12000
Photos

0 5000 10000 15000 20000 25000 30000

14000

35000

16000

40000

mu = 0.0
sigma =1.15
lognorm_mean = math.e ** (mu + sigma ** 2 / 2)

desired mean = 1.0

def (value):
return value / lognorm_mean * desired_mean

for weight in nr.lognormal(mu, sigma, m):

chosen_bin = nr.randint(0, n)
bins[chosen_bin] += normalize(weight)

(128.7, 116.7, 136.1, 198.2,89.1, 125.4, 130.4]

mu = 0.0
sigma = 1.15
lognorm_mean = math.e ** (mu + sigma ** 2 / 2)

desired mean = 1.0
baseline = 0.05

def (value):
return (value / lognorm_mean
* (desired_mean - baseline)
+ baseline)

for weight in nr.lognormal(mu, sigma, m):

chosen_bin = nr.randint(0, n)
bins[chosen_bin] += normalize(weight)

[, 137.5, 134.3, 126.2, 113.5, , 101.6, 113.7]

THIS IS WHY

PERFECTION
1S IMPOSSIBLE

p—_ . -ﬂ
ALK -r ot et O Y Y

Tomeelslss e f
-:I, i e A

WHAT EFFECT DOES IT HAVE?

1400

-— Random simulation

1200

- Actual distribution

1000

800

600

400

200

S —
S —

0% 25% 50% 75% 100%

00 /vaLatency Tip Of The Day: #| X _ ‘ Tyler ‘
- > C \‘ | latencytipoftheday.blogspot.co.za/2014/06/latencytipoftheday-most-page-loads.html {k (}I o @ =
| Qf G+ 16 More ¥ Next Blog» Create Blog Sign In

) Gil Tene

CTO and co-founder
of Azul Systems.

View my complete
profile

Blog Archive

v 2014 (8)
¥ June (8)

#LatencyTipOfTheDay: Median
Server Response Time: ...

#LatencyTipOfTheDay: MOST
page loads will experien...

#LatencyTipOfTheDay: Q:
What's wrong with this pic...

#LatencyTipOfTheDay: If you
are not measuring and/...

#LatencyTipOfTheDay :

The probabillity of all N resource requests in a page avoiding
the 99th percentile is (99% A N).

The probability of a single resource request avoiding the 99th percentile is 99%.

I .LLJUL\U.LL.L\L,Y J.Ll.l.ltJ /4 MAddlC .LL/ULY

99% N 69 = 49.9% page loads will

experience the 997 lie server response

Yes. MOST of the page view attempts will experience the 99%'lie server response
time in modern web applications. You didn't read that wrong.

This simple fact seems to
surprise many people.
Especially people who spend
much of their time looking at
pretty lines depicting
averages, 50%!'lie, 90%'lie or
95%!'lies of server response
time in feel-good monitoring
charts. | am constantly
amazed by how little attention
is paid to the "higher end" of
the percentile spectrum in most application monitoring, benchmarking, and tuning

ﬂﬂ\l;"l‘\nmﬂﬂ*‘ﬂ Q;\lnn +hl\ ‘ﬂf\+ *‘hﬂ* mﬂﬂ+ 1 18/ "™ ;ﬂ*l‘\"ﬂf*‘:f\ﬂﬂ \ll;ll I\\I'\l\";ﬂnf\ﬂ +hﬂﬂﬂ ™1 |mhnrn

Random

P0.0

P25.0
P50.0
P75.0
P95.0
P99.0
P99.9

IIUIIII

0% load 60% load 70% load 80% load 90% load

SO WHAT DO WE DO ABOUT IT?

1400

1200 — Random simulation
- JSQ simulation

1000

800

600

400

200

0% 25% 50% 75% 100%

40

35

30

25

20

15

5 N "‘ ’lwh

/‘

N

A

%

il

"\\'v\ I

i M

L‘@n’“vh\ /A

”W"
\" “§ "

2000

20000

25000

o > (R w = (&) (@) ~l Qo ({0

2000

10000

\ "l'n' .
I

20000

Random

8
B P0.0
7 B P25.0
B P50.0
6 Bl P750
—1 P95.0
5 E=a P99.0
B P999
4
3
2
| I _—i_‘
50% load 60% load 70% load 80% load 90% load
6 Join-shortest-queue
7
6
5
4
3
2

e e s R N

50% load 60% load 70% load 80% load 90% load

LET’S THROW A WRENCH INTO THIS...

DISTRIBUTED LOAD
BALANCING

AND WHY IT MAKES EVERYTHING HARDER

DISTRIBUTED RANDOM IS EXACTLY THE SAME

DISTRIBUTED JOIN-SHORTEST-QUEUE IS A

16

14

12

-
—
—
—
——

6000 8000 10000 12000 14000 16000 18000 20000 22000
+2.58693€e9

12
10

1
1

ON#O@ONSONJ&OW

1
1
10

00
2

1
1

ON#O’COOI\)gONbO)CO
o
o

14
12
10

oON B O @

6000
16

14
12

[y
y ON O 0O

r TN

8000 10000 12000 14000 16000 18000 20000
8000 10000 12000 14000 16000LAA/\ 18000 20000
8000 10000 12000 14000 16000 18000 20000
8000 10000 12000 r/ \/14000 16000 18000 20000
8000 10000 12000 14000 16000 18000 20000

F T . T T 7.

22000

22000

22000

22000

22000

F e T a7 7.

The Power of Two Choices in Randomized Load Balancing
by

Michael David Mitzenmacher

B.A. (Harvard University) 1991

A dissertation submitted in partial satisfaction of the

requirements for the degree of
Doctor of Philosophy

Computer Science
in the

GRADUATE DIVISION
of the

mu = 0.0
sigma = 1.15
lognorm_mean = math.e ** (mu + sigma ** 2 / 2)

desired mean = 1.0
baseline = 0.05

def (value):
return (value / lognorm_mean
* (desired_mean - baseline)
+ baseline)

for weight in nr.lognormal(mu, sigma, m):

chosen_bin = nr.randint(0, n)
bins[chosen_bin] += normalize(weight)

[, 137.5, 134.3, 126.2, 113.5, , 101.6, 113.7]

mu = 0.0
sigma = 1.15
lognorm_mean = math.e ** (mu + sigma ** 2 / 2)

desired mean = 1.0
baseline = 0.05

def (value):
return (value / lognorm_mean
* (desired_mean - baseline)
+ baseline)

for weight in nrlognormal(mu, sigma, m):
a = nr.randint(0, n)
b = nr.randint(0, n)
chosen_bin = a if bins[a] < bins[b] else b
bins[chosen_bin] += normalize(weight)

[130.5, 131.7, 129.7, 132.0, 131.3, , , 132.6]

[, 137.5, 134.3, 126.2, 113.5, , 101.6, 113.7]

STANDARD DEVIATION: 22.9

[130.5, 131.7, 129.7, 132.0, 131.3, , , 132.6]

STANDARD DEVIATION: 1.18

1400

— Random simulation

1200

— JSQ simulation
-— Randomized JSQ simulation

1000

800

600

400

200

0% 25% 50% 75% 100%

Random

P0.0

P25.0
P50.0
P75.0
P95.0
P99.0
P99.9

BUANNE

. Em e —

50% load 60% load 70% load 80% load 90% load
Power of Two

O = N W S, O O N o

8

7

6

5

4

3

2

| 4_—_-

; e il e — —
50% load 60% load 70% load 80% load 90% load

8 JSQ

7

6

5

4

3

2

1

50% load 60% load 70% load 80% load 90% load

How Useful 1s Old Information?

Michael Mitzenmacher

Digital Systems Research Center
130 Lytton Ave.

Palo Alto, CA 94301

michaelm@pa.dec.com

Abstract

We consider the problem of load balancing in dynamic distributed systems in

cases where new incoming tasks can make use of old information. For example,
consider a multi-processor system where incoming tasks with exponentially dis-
tributed service requirements arrive as a Poisson process, the tasks must choose
a processor for service, and a task knows when making this choice the processor
loads from T seconds ago. What is a good strategy for choosing a processor,
in order for tasks to minimize their expected time in the system? Such models
can also be used to describe settings where there is a transfer delay between
the time a task enters a system and the time it reaches a processor for service.

Our models are based on considering the behavior of limiting systems where
the number of processors goes to infinity. The limiting systems can be shown

Interpreting Stale Load Information®

Michael Dahlin

Department of Computer Sciences
University of Texas at Austin
dahlin(@cs.utexas.edu

Abstract

In this paper we examine the problem of balancing load in a large-scale distributed system
when information about server loads may be stale. It is well known that sending each request to
the machine with the apparent lowest load can behave badly in such systems, yet this technique
is common in practice. Other systems use round-robin or random selection algorithms that
entirely ignore load information or that only use a small subset of the load information. Rather
than risk extremely bad performance on one hand or ignore the chance to use load information
to improve performance on the other, we develop strategies that interpret load information
based on its age. Through simulation, we examine several simple algorithms that use such load
interpretation strategies under a range of workloads. Our experiments suggest that by properly
interpreting load information, systems can (1) match the performance of the most aggressive
algorithms when load information is fresh relative to the job arrival rate, (2) outperform the
best of the other algorithms we examine by as much as 60% when information is moderately
old, (3) significantly outperform random load distribution when information is older still, and
(4) avoid pathological behavior even when information 1s extremely old.

Lalith Suresh” Marco Canini*

TTU Berlin

Abstract

Achieving predictable performance is critical for
many distributed applications, yet difficult to achieve due
to many factors that skew the tail of the latency distribu-
tion even in well-provisioned systems. In this paper, we
present the fundamental challenges involved in design-
ing a replica selection scheme that is robust in the face
of performance fluctuations across servers. We illustrate
these challenges through performance evaluations of the
Cassandra distributed database on Amazon EC2. We
then present the design and implementation of an adap-
tive replica selection mechanism, C3, that is robust to
performance variability in the environment. We demon-
strate C3’s effectiveness in reducing the latency tail and
improving throughput through extensive evaluations on
Amazon EC2 and through simulations. Our results show
that C3 significantly improves the latencies along the

PP LA I R [S RN T SRR R R R

Stefan Schmid'*
*Université catholique de Louvain

C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection

Anja Feldmann®
*Telekom Innovation Labs

cial clouds to deliver applications further exacerbates the
response time unpredictability since, in these environ-
ments, applications almost unavoidably experience per-
formance interference due to contention for shared re-

sources (like CPU, memory, and 1/0O) [26, 50,52].

Several studies [16,23, 50] indicate that latency distri-
butions in Internet-scale systems exhibit long-tail behav-
iors. That is, the 99.9"" percentile latency can be more
than an order of magnitude higher than the median la-
tency. Recent efforts [2, 16, 19, 23, 36,44, 53] have thus
proposed approaches to reduce tail latencies and lower
the impact of skewed performance. These approaches
rely on standard techniques including giving preferential
resource allocations or guarantees, reissuing requests,
trading off completeness for latency, and creating per-
formance models to predict stragglers in the system.

A recurring pattern to reducing tail latency is to ex-

ANOTHER CRAZY IDEA

- = Random

- =-=8Q(2)
JIQ-Random r=10
JIQ-Random r=20
JIQ-Random r=40

Join-Idle-Queu
for Dyn

Yi Lu?, Qiaomin Xie?, Gabri

*Department of Electrical and Cor
PExtreme Computing Group, Micr
“Microsoft Azure

|—
)
£
—
()
7))
-
o
Q.
(7))
()
-
-
©
D
=

N W A 00 O N 0O O O

The prevalence of dynamic-c
has motivated an increasingly wi
elasticity, and distributed designy
ized design, such as Join-the-Sh

dispatchers. : : : 014 O.[5 016 0.17

We propose a novel class of] Load on the system, N
in large systems. Unlike algorit

overhead between the dispatche
large system limit and find thaf (a)
reduction in queueing overhead

basic JIQ algorithm deals with very HIgh Toads USINE ONIy Tocal TNTOTMAtIoN Of Server Toad.

Keywords: Load balancing - queueing analysis - randomized algorithm - cloud computing

Introduction

WRAP UP

THANKS BYE

tyler@fastly.com

@tbmcmullen

