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Safe Harbor Statement
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j.u.c.CompletableFuture

• @since Java8

• Not used in Java8

5



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

j.u.c.CompletableFuture

• @since Java8
• Not used in Java8

5



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

j.u.c.CompletableFuture

• @since Java8
• Not used in Java8

5



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

j.u.c.CompletableFuture

• @since Java8
• Not used in Java8

5



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

j.u.c.CompletableFuture

• Usage in Java9:

– Process API

– HttpClient*

*Most tips are from here!
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HttpClient

(a.k.a. JEP-110)
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HttpClient a.k.a. JEP-110

• Part of JDK 9, but not included into Java SE

– module: jdk.incubator.httpclient
– package: jdk.incubator.http

• Incubator Modules a.k.a. JEP-11

– «The incubation lifetime of an API is limited: It is expected that the
API will either be standardized or otherwise made final in the next
release, or else removed»

8
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HttpClient

Two ways to send request:

• synchronous/blocking
• asynchronous

9
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synchronous/blocking

HttpClient client = «create client»;
HttpRequest request = «create request»;

HttpResponse<String> response =

client.send(request, BodyHandler.asString());

if (response.statusCode() == 200) {
System.out.println("We’ve got: " + response.body());

}

...
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asynchronous

HttpClient client = «create client»;
HttpRequest request = «create request»;

CompletableFuture<HttpResponse<String>> futureResponse =

client.sendAsync(request, BodyHandler.asString());

futureResponse.thenAccept( response -> {
if (response.statusCode() == 200) {

System.out.println("We’ve got: " + response.body());
}

});
...
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Client builder

HttpClient client = HttpClient.newBuilder()
.authenticator(someAuthenticator)
.sslContext(someSSLContext)
.sslParameters(someSSLParameters)
.proxy(someProxySelector)
.executor(someExecutorService)
.followRedirects(HttpClient.Redirect.ALWAYS)
.cookieManager(someCookieManager)
.version(HttpClient.Version.HTTP_2)
.build();

Good habit for async API
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First step of performance:

developers!
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First step of performance:

developers!
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What about Java developers performance?

14
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j.u.c.CompletionStage

• contains 38 methods

• 36 of them has 3 forms:

– somethingAsync(..., executor)

– somethingAsync(...)

– something(...)

15
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j.u.c.CompletionStage

• somethingAsync(..., executor)
– runs action chain in the executor

• somethingAsync(...)
– somethingAsync(..., ForkJoinPool.commonPool())

• something(...)
– default execution ?

?will talk about this later 16
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j.u.c.CompletionStage

• 12 methods remained

• 9 of them has 3 forms:

– Apply – function from input to R, result CompletableFuture<R>

– Accept – consumer of input, result CompletableFuture<Void>

– Run – just execute Runnable, result CompletableFuture<Void>
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j.u.c.CompletionStage

• single input

– thenApply, thenAccept, thenRun

• binary «or»

– applyToEither, acceptEither, runAfterEither

• binary «and»

– thenCombine, thenAcceptBoth, runAfterBoth
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j.u.c.CompletionStage

• 3 methods remained

– thenCompose

– handle

– whenComplete
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j.u.c.CompletionStage

• thenCompose

– function from input to CompletableFuture<R>,
result CompletableFuture<R>

– a.k.a flatMap

20
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j.u.c.CompletionStage

• handle

– function from input and exception to R,
result CompletableFuture<R>
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j.u.c.CompletionStage

• whenComplete

– consumer from input and exception

– similar to Accept methods above

– result - the same as input

22
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j.u.c.CompletionStage

• 2 methods remained (does’t have async versions)

– exceptionally - function from exception to R,
result CompletableFuture<R>

– toCompletableFuture

23
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j.u.c.CompletableFuture

• contains 38 methods inherited from CompletionStage

and

• 22 other instance methods

• 12 static methods
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j.u.c.CompletableFuture

• 9 ways to complete future

– complete/completeAsync/completeExeceptionally

– cancel

– obtrudeValue/obtrudeException

– completeOnTimeout/orTimeout
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j.u.c.CompletableFuture

• 4 ways to get value

– get/join – blocking

– get(timeout, timeUnit) – not so blocking

– getNow(valueIfAbsent) – non-blocking
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j.u.c.CompletableFuture

• 3 ways to know status

– isDone

– isCompletedExceptionally

– isCancelled
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j.u.c.CompletableFuture

• 8 static methods to create future

– completedFuture/completedStage

– failedFuture/failedStage

– runAsync(Runnable) → CompletableFuture<Void>

– supplyAsync(Supplier<U>) → CompletableFuture<U>
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Blocking or asynchronous?
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Blocking or asynchronous

• Blocking:

– R doSmth(...);

• Asynchronous:

– CompletableFuture<R> doSmthAsync(...);

30
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Yin and yang Blocking and asynchronous

R doSmth(...);

CompletableFuture<R> doSmthAsync(...);

CompletableFuture
.supplyAsync(() -> doSmth(...));

doSmthAsync(...)
.join();
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Blocking via async

R doSmth(...) {
return doSmthAsync(...).join();

}

Will it work?
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User threads Executor threads

doSmth

doSmthAsync

join

work
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Let’s measure
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Let’s measure

34



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Let’s measure

34



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Avoid transition task from one thread to another.
It costs.
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Async via blocking

CompletableFuture<R> doSmthAsync(...) {
return CompletableFuture.supplyAsync(()->doSmth(...), executor);

}

Will it work?
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Back to HttpClient

public <T> HttpResponse<T>
send(HttpRequest req, HttpResponse.BodyHandler<T> responseHandler) {

...
}

public <T> CompletableFuture<HttpResponse<T>>
sendAsync(HttpRequest req, HttpResponse.BodyHandler<T> responseHandler) {

return CompletableFuture.supplyAsync(() -> send(req, responseHandler), executor);
}

Will it work?

37



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Back to HttpClient

public <T> HttpResponse<T>
send(HttpRequest req, HttpResponse.BodyHandler<T> responseHandler) {

...
}

public <T> CompletableFuture<HttpResponse<T>>
sendAsync(HttpRequest req, HttpResponse.BodyHandler<T> responseHandler) {

return CompletableFuture.supplyAsync(() -> send(req, responseHandler), executor);
}

Sometimes.
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One does not simply make «sendAsync»

• send header
• send body
• receive header from server
• receive body from server

38
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One does not simply make «sendAsync»

• send header
• send body
• wait header from server
• wait body from server
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User threads Executor threads

sendAsync

supplyAsync
send
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User threads Executor threads

sendAsync

supplyAsync
send

wait/await

receiveResponse

notify/signal

DON’T!
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User threads Executor threads

sendAsync

supplyAsync
send

wait/await

Aux threads

receiveResponse

notify/signal

processResponse

39
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RTFM (HttpClient.Builder)

/**
* Sets the executor to be used for asynchronous tasks. If this method is
* not called, a default executor is set, which is the one returned from
* {@link java.util.concurrent.Executors#newCachedThreadPool()
* Executors.newCachedThreadPool}.
*
* @param executor the Executor
* @return this builder
*/
public abstract Builder executor(Executor executor);

If not explicitly stated otherwise, async API
should be able to work with any kind of executor.
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RTFM (java.util.concurrent.Executors)
/**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available. These pools will typically improve the performance
* of programs that execute many short-lived asynchronous tasks.
* Calls to {@code execute} will reuse previously constructed
* threads if available. If no existing thread is available, a new
* thread will be created and added to the pool. Threads that have
* not been used for sixty seconds are terminated and removed from
* the cache. Thus, a pool that remains idle for long enough will
* not consume any resources. Note that pools with similar
* properties but different details (for example, timeout parameters)
* may be created using {@link ThreadPoolExecutor} constructors.
*
* @return the newly created thread pool
*/
public static ExecutorService newCachedThreadPool()
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CachedThreadPool

• Pro:
– If all threads are busy, the task will be executed in a new thread

• Con:
– If all threads are busy, a new thread is created
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sendAsync via send

The single HttpRequest uses ∼ 20 threads.

Does it mean that

100 simultaneous requests ⇒ ∼ 2000 threads?

a

100 simultaneous requests ⇒ OutOfMemoryError!
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Eliminate waiting (step 1)

CompletableFuture as a single-use Condition.

Executor thread

Condition responseReceived;

R send(...) {
sendRequest(...);
responseReceived.await();
processResponse();
...

}

Aux thread

... receiveResponse(...) {
...
responseReceived.signal();
...

}

A
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Eliminate waiting (step 1)

CompletableFuture as a single-use Condition.

Executor thread

CompletableFuture<...> responseReceived;

R send(...) {
sendRequest(...);
responseReceived.join();
processResponse();
...

}

Aux thread

... receiveResponse(...) {
...
responseReceived.complete();
...

}

A
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Eliminate waiting (step 2)

CompletableFuture<...> sendAsync(...) {
return CompletableFuture.supplyAsync(() -> send(...));

}

R send(...) {
sendRequest(...);
responseReceived.join();
return processResponse();

}
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Eliminate waiting (step 2)

CompletableFuture<...> sendAsync(...) {
return CompletableFuture.supplyAsync(() -> sendRequest(...))

.thenApply((...) -> responseReceived.join())

.thenApply((...) -> processResponse());
}

A
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Eliminate waiting (step 2)

CompletableFuture<...> sendAsync(...) {
return CompletableFuture.supplyAsync(() -> sendRequest(...))

.thenCompose((...) -> responseReceived)

.thenApply((...) -> processResponse());
}

A
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User threads Executor threads

sendAsync

supplyAsync
send

thenCompose

Aux threads

future
receiveResponse

complete

processResponse
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What about sendAsync performance?

wait()/await() elimination
⇓

+40%
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Avoid blocking inside CompletableFuture chains.
It costs.

51



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Quiz

Thread 1

future.thenApply((...) -> foo());

Thread 2

future.complete(...);

Which thread will execute foo()?
A) thread 1
B) thread 2
C) thread 1 or thread 2
D) thread 1 and thread 2
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Quiz

Thread 1

future.thenApply((...) -> foo());

Thread 2

future.complete(...);

Which thread will execute foo()?
A) thread 1
B) thread 2
C) thread 1 or thread 2
D) thread 1 and thread 2

correct answer

52



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Where exactly CompletableFuture chain of

actions will be executed?
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Two simple rules

(not always work)

• Completion thread executes actions attached «long enough»
before completion.

• Construction thread executes actions if CompletableFuture is
already completed («long enough» before).

Races are coming!

54
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Chain of actions may be executed from:

• Completion thread

– complete, completeExceptionally ...

• Construction thread

– thenApply, thenCompose ...

• Value getting thread

– get, join ...
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Let’s check!

56
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jsctress

http://openjdk.java.net/projects/code-tools/jcstress/

The Java Concurrency Stress tests (jcstress) is an experimental
harness and a suite of tests to aid the research in the correctness of
concurrency support in the JVM, class libraries, and hardware.

57
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Example 1

CompletableFuture<...> start =
new CompletableFuture<>();

start.complete(...); start.thenApply(a -> action());

Results:

Occurrences Expectation Interpretation
1,630,058,138 ACCEPTABLE action in chain construction thread
197,470,850 ACCEPTABLE action in completion thread
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Example 2

CompletableFuture<...> start =
new CompletableFuture<>();

start.thenApply(a -> action());
start.complete(...); start.complete(...);

Results:

Occurrences Expectation Interpretation
819,755,198 ACCEPTABLE action in successful completion thread
163,205,510 ACCEPTABLE action in failed completion thread
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Example 3

CompletableFuture<...> start =
new CompletableFuture<>();

start.thenApply(a -> action());
start.complete(...); start.join();

Results:

Occurrences Expectation Interpretation
904,651,258 ACCEPTABLE action in completion thread
300,524,840 ACCEPTABLE action in join thread
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Example 4

CompletableFuture<...> start =
new CompletableFuture<>();

start.thenApply(a -> action1());
start.thenApply(a -> action2());

start.complete(...); start.join();

Results:
Occurrences Expectation Interpretation
179,525,918 ACCEPTABLE both actions in the same thread
276,608,380 ACCEPTABLE actions in different threads
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What is faster?

Same thread chain
future
.thenApply((...) -> foo1())
.thenApply((...) -> foo2())

Async chain
future
.thenApplyAsync((...) -> foo1(), executor)
.thenApplyAsync((...) -> foo2(), executor);
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Let’s measure

63



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Let’s measure
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Let’s measure
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CompletableFuture chaining

• thenSomethingAsync(...) – gives predictability.
• thenSomething(...) – gives performance.
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Avoid transition task from one thread to another.
It costs.
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When predictability is important

HttpClient has the single auxiliary thread «SelectorManager».

• waits on Selector.select
• reads data from Socket
• extracts HTTP2 frames
• distributes frames to receivers
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User threads

sendAsync

Executor threads

thenCompose

thenApply(foo)

thenApply(bar)

SelectorManager

future

receiveResponse

complete

foo

bar
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User threads

sendAsync

Executor threads

thenCompose

thenApply(foo)

thenApply(bar)

SelectorManager

future

receiveResponse

complete

foo

bar

foo

barDON’T!
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When predictability is important

CompletableFuture<...> response;

Executor thread «SelectorManager»

...

.thenCompose(() -> response) response.complete(...);

...

ee
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One way (@since 9)

CompletableFuture<...> response;

Executor thread «SelectorManager»

...

.thenCompose(() -> response) response.completeAsync(..., executor);

...

ee
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Another way

CompletableFuture<...> response;

Executor thread «SelectorManager»

...

.thenComposeAsync(() -> response, executor) response.complete(...);

...

ee
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What we’ve got (in both cases)

• Pro:
– «SelectorManager» is protected

• Con:
– Switching from one executor thread to another executor thread

(costs).
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Third way

CompletableFuture<...> response;

Executor thread «SelectorManager»

CompletableFuture<...> cf = response;
if(!cf.isDone()) { response.complete(...);

cf = cf.thenApplyAsync(x -> x, executor);
}
...thenCompose(() -> cf);
...

ee
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What about sendAsync performance?

Tuning complete()

⇓
+16%
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Carefully avoid transition task
from one thread to another.

It costs.
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What if server responds quickly?

CompletableFuture<...> sendAsync(...) {
return
sendHeaderAsync(..., executor)
.thenCompose(() -> sendBody())
.thenCompose(() -> getResponseHeader())
.thenCompose(() -> getResponseBody())
...

}

Sometimes (3% cases)

CompletableFuture

is already completed

getResponseBody() is executed from user thread
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We have thenComposeAsync()

• Pro:
– User thread is protected

• Con:
– Switching from one executor thread to another executor thread

(costs).
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Do it

CompletableFuture<...> sendAsync(...) {
CompletableFuture<Void> start = new CompletableFuture<>();

CompletableFuture<...> end = start.thenCompose(v -> sendHeader())
.thenCompose(() -> sendBody())
.thenCompose(() -> getResponseHeader())
.thenCompose(() -> getResponseBody())
...;

start.completeAsync(() -> null, executor); // trigger execution
return end;

}
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What about sendAsync performance?

Delayed start
⇓

+10%

78



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

It may be useful to build chain of actions before
execution.
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Let’s back to CachedThreadPool

• Pro:
– If all threads are busy, the task will be executed in a new thread

• Con:
– If all threads are busy, a new thread is created

Is that a good choice for the default executor?

80



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Try different executors

CachedThreadPool 35500 ops/sec

FixedThreadPool(2) 61300 ops/sec

+72%
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Different ThreadPools show different performance.
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Q & A ?
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Appendix

84
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another example of thenCompose

// e.g. how to make recursive CompletableFuture chain

CompletableFuture<...> makeRecursiveChain(...) {
if(«recursion ends normally») {

return CompletableFuture.completedFuture(...);
else if(«recursion ends abruptly») {

return CompletableFuture.failedFuture(...); // appeared in Java9
}
return CompletableFuture.supplyAsync(() -> doSomething(...))

.thenCompose((...) -> makeRecursiveChain(...));
}

A
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