

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Asynchronous API with
CompletableFuture
Performance Tips and Tricks

Sergey Kuksenko
Java Platform Group, Oracle
November, 2017

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

About me

• Java Performance Engineer at Oracle, @since 2010
• Java Performance Engineer, @since 2005
• Java Engineer, @since 1996
• OpenJDK/OracleJVM is the third JVM in my experience
• Co-author of JMH (Java Microbenchmark Harness)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• @since Java8

• Not used in Java8

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• @since Java8
• Not used in Java8

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• @since Java8
• Not used in Java8

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• @since Java8
• Not used in Java8

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• Usage in Java9:

– Process API

– HttpClient*

*Most tips are from here!

6

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

HttpClient

(a.k.a. JEP-110)

7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

HttpClient a.k.a. JEP-110

• Part of JDK 9, but not included into Java SE

– module: jdk.incubator.httpclient
– package: jdk.incubator.http

• Incubator Modules a.k.a. JEP-11

– «The incubation lifetime of an API is limited: It is expected that the
API will either be standardized or otherwise made final in the next
release, or else removed»

8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

HttpClient a.k.a. JEP-110

• Part of JDK 9, but not included into Java SE

– module: jdk.incubator.httpclient
– package: jdk.incubator.http

• Incubator Modules a.k.a. JEP-11

– «The incubation lifetime of an API is limited: It is expected that the
API will either be standardized or otherwise made final in the next
release, or else removed»

8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

HttpClient

Two ways to send request:

• synchronous/blocking
• asynchronous

9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

synchronous/blocking

HttpClient client = «create client»;
HttpRequest request = «create request»;

HttpResponse<String> response =

client.send(request, BodyHandler.asString());

if (response.statusCode() == 200) {
System.out.println("We’ve got: " + response.body());

}

...

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

asynchronous

HttpClient client = «create client»;
HttpRequest request = «create request»;

CompletableFuture<HttpResponse<String>> futureResponse =

client.sendAsync(request, BodyHandler.asString());

futureResponse.thenAccept(response -> {
if (response.statusCode() == 200) {

System.out.println("We’ve got: " + response.body());
}

});
...

11

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Client builder

HttpClient client = HttpClient.newBuilder()
.authenticator(someAuthenticator)
.sslContext(someSSLContext)
.sslParameters(someSSLParameters)
.proxy(someProxySelector)
.executor(someExecutorService)
.followRedirects(HttpClient.Redirect.ALWAYS)
.cookieManager(someCookieManager)
.version(HttpClient.Version.HTTP_2)
.build();

Good habit for async API

12

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

First step of performance:

developers!

13

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

First step of performance:

developers!

13

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

What about Java developers performance?

14

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• contains 38 methods

• 36 of them has 3 forms:

– somethingAsync(..., executor)

– somethingAsync(...)

– something(...)

15

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• somethingAsync(..., executor)
– runs action chain in the executor

• somethingAsync(...)
– somethingAsync(..., ForkJoinPool.commonPool())

• something(...)
– default execution ?

?will talk about this later 16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• 12 methods remained

• 9 of them has 3 forms:

– Apply – function from input to R, result CompletableFuture<R>

– Accept – consumer of input, result CompletableFuture<Void>

– Run – just execute Runnable, result CompletableFuture<Void>

17

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• single input

– thenApply, thenAccept, thenRun

• binary «or»

– applyToEither, acceptEither, runAfterEither

• binary «and»

– thenCombine, thenAcceptBoth, runAfterBoth

18

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• 3 methods remained

– thenCompose

– handle

– whenComplete

19

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• thenCompose

– function from input to CompletableFuture<R>,
result CompletableFuture<R>

– a.k.a flatMap

20

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• handle

– function from input and exception to R,
result CompletableFuture<R>

21

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• whenComplete

– consumer from input and exception

– similar to Accept methods above

– result - the same as input

22

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletionStage

• 2 methods remained (does’t have async versions)

– exceptionally - function from exception to R,
result CompletableFuture<R>

– toCompletableFuture

23

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• contains 38 methods inherited from CompletionStage

and

• 22 other instance methods

• 12 static methods

24

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• 9 ways to complete future

– complete/completeAsync/completeExeceptionally

– cancel

– obtrudeValue/obtrudeException

– completeOnTimeout/orTimeout

25

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• 4 ways to get value

– get/join – blocking

– get(timeout, timeUnit) – not so blocking

– getNow(valueIfAbsent) – non-blocking

26

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• 3 ways to know status

– isDone

– isCompletedExceptionally

– isCancelled

27

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

j.u.c.CompletableFuture

• 8 static methods to create future

– completedFuture/completedStage

– failedFuture/failedStage

– runAsync(Runnable) → CompletableFuture<Void>

– supplyAsync(Supplier<U>) → CompletableFuture<U>

28

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Blocking or asynchronous?

29

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Blocking or asynchronous

• Blocking:

– R doSmth(...);

• Asynchronous:

– CompletableFuture<R> doSmthAsync(...);

30

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Yin and yang Blocking and asynchronous

R doSmth(...);

CompletableFuture<R> doSmthAsync(...);

CompletableFuture
.supplyAsync(() -> doSmth(...));

doSmthAsync(...)
.join();

31

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Blocking via async

R doSmth(...) {
return doSmthAsync(...).join();

}

Will it work?

32

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads Executor threads

doSmth

doSmthAsync

join

work

33

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Let’s measure

34

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Let’s measure

34

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Let’s measure

34

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Avoid transition task from one thread to another.
It costs.

35

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Async via blocking

CompletableFuture<R> doSmthAsync(...) {
return CompletableFuture.supplyAsync(()->doSmth(...), executor);

}

Will it work?

36

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Back to HttpClient

public <T> HttpResponse<T>
send(HttpRequest req, HttpResponse.BodyHandler<T> responseHandler) {

...
}

public <T> CompletableFuture<HttpResponse<T>>
sendAsync(HttpRequest req, HttpResponse.BodyHandler<T> responseHandler) {

return CompletableFuture.supplyAsync(() -> send(req, responseHandler), executor);
}

Will it work?

37

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Back to HttpClient

public <T> HttpResponse<T>
send(HttpRequest req, HttpResponse.BodyHandler<T> responseHandler) {

...
}

public <T> CompletableFuture<HttpResponse<T>>
sendAsync(HttpRequest req, HttpResponse.BodyHandler<T> responseHandler) {

return CompletableFuture.supplyAsync(() -> send(req, responseHandler), executor);
}

Sometimes.

37

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

One does not simply make «sendAsync»

• send header
• send body
• receive header from server
• receive body from server

38

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

One does not simply make «sendAsync»

• send header
• send body
• wait header from server
• wait body from server

38

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads Executor threads

sendAsync

supplyAsync
send

39

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads Executor threads

sendAsync

supplyAsync
send

wait/await

39

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads Executor threads

sendAsync

supplyAsync
send

wait/await

receiveResponse

notify/signal

39

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads Executor threads

sendAsync

supplyAsync
send

wait/await

receiveResponse

notify/signal

39

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads Executor threads

sendAsync

supplyAsync
send

wait/await

receiveResponse

notify/signal

DON’T!

39

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads Executor threads

sendAsync

supplyAsync
send

wait/await

Aux threads

receiveResponse

notify/signal

processResponse

39

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

RTFM (HttpClient.Builder)

/**
* Sets the executor to be used for asynchronous tasks. If this method is
* not called, a default executor is set, which is the one returned from
* {@link java.util.concurrent.Executors#newCachedThreadPool()
* Executors.newCachedThreadPool}.
*
* @param executor the Executor
* @return this builder
*/
public abstract Builder executor(Executor executor);

If not explicitly stated otherwise, async API
should be able to work with any kind of executor.

40

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

RTFM (java.util.concurrent.Executors)
/**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available. These pools will typically improve the performance
* of programs that execute many short-lived asynchronous tasks.
* Calls to {@code execute} will reuse previously constructed
* threads if available. If no existing thread is available, a new
* thread will be created and added to the pool. Threads that have
* not been used for sixty seconds are terminated and removed from
* the cache. Thus, a pool that remains idle for long enough will
* not consume any resources. Note that pools with similar
* properties but different details (for example, timeout parameters)
* may be created using {@link ThreadPoolExecutor} constructors.
*
* @return the newly created thread pool
*/
public static ExecutorService newCachedThreadPool()

41

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

CachedThreadPool

• Pro:
– If all threads are busy, the task will be executed in a new thread

• Con:
– If all threads are busy, a new thread is created

42

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

sendAsync via send

The single HttpRequest uses ∼ 20 threads.

Does it mean that

100 simultaneous requests ⇒ ∼ 2000 threads?

a

100 simultaneous requests ⇒ OutOfMemoryError!

43

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

sendAsync via send

The single HttpRequest uses ∼ 20 threads.

Does it mean that

100 simultaneous requests ⇒ ∼ 2000 threads?

a

100 simultaneous requests ⇒ OutOfMemoryError!

43

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Eliminate waiting (step 1)

CompletableFuture as a single-use Condition.

Executor thread

Condition responseReceived;

R send(...) {
sendRequest(...);
responseReceived.await();
processResponse();
...

}

Aux thread

... receiveResponse(...) {
...
responseReceived.signal();
...

}

A

44

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Eliminate waiting (step 1)

CompletableFuture as a single-use Condition.

Executor thread

CompletableFuture<...> responseReceived;

R send(...) {
sendRequest(...);
responseReceived.join();
processResponse();
...

}

Aux thread

... receiveResponse(...) {
...
responseReceived.complete();
...

}

A

45

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Eliminate waiting (step 2)

CompletableFuture<...> sendAsync(...) {
return CompletableFuture.supplyAsync(() -> send(...));

}

R send(...) {
sendRequest(...);
responseReceived.join();
return processResponse();

}

46

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Eliminate waiting (step 2)

CompletableFuture<...> sendAsync(...) {
return CompletableFuture.supplyAsync(() -> sendRequest(...))

.thenApply((...) -> responseReceived.join())

.thenApply((...) -> processResponse());
}

A

47

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Eliminate waiting (step 2)

CompletableFuture<...> sendAsync(...) {
return CompletableFuture.supplyAsync(() -> sendRequest(...))

.thenCompose((...) -> responseReceived)

.thenApply((...) -> processResponse());
}

A

48

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads Executor threads

sendAsync

supplyAsync
send

thenCompose

Aux threads

future
receiveResponse

complete

processResponse

49

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

What about sendAsync performance?

wait()/await() elimination
⇓

+40%

50

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Avoid blocking inside CompletableFuture chains.
It costs.

51

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Quiz

Thread 1

future.thenApply((...) -> foo());

Thread 2

future.complete(...);

Which thread will execute foo()?
A) thread 1
B) thread 2
C) thread 1 or thread 2
D) thread 1 and thread 2

52

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Quiz

Thread 1

future.thenApply((...) -> foo());

Thread 2

future.complete(...);

Which thread will execute foo()?
A) thread 1
B) thread 2
C) thread 1 or thread 2
D) thread 1 and thread 2

correct answer

52

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Where exactly CompletableFuture chain of

actions will be executed?

53

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Two simple rules

(not always work)

• Completion thread executes actions attached «long enough»
before completion.

• Construction thread executes actions if CompletableFuture is
already completed («long enough» before).

Races are coming!

54

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Two simple rules (not always work)

• Completion thread executes actions attached «long enough»
before completion.

• Construction thread executes actions if CompletableFuture is
already completed («long enough» before).

Races are coming!

54

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Chain of actions may be executed from:

• Completion thread

– complete, completeExceptionally ...

• Construction thread

– thenApply, thenCompose ...

• Value getting thread

– get, join ...

55

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Let’s check!

56

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

jsctress

http://openjdk.java.net/projects/code-tools/jcstress/

The Java Concurrency Stress tests (jcstress) is an experimental
harness and a suite of tests to aid the research in the correctness of
concurrency support in the JVM, class libraries, and hardware.

57

http://openjdk.java.net/projects/code-tools/jcstress/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Example 1

CompletableFuture<...> start =
new CompletableFuture<>();

start.complete(...); start.thenApply(a -> action());

Results:

Occurrences Expectation Interpretation
1,630,058,138 ACCEPTABLE action in chain construction thread
197,470,850 ACCEPTABLE action in completion thread

58

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Example 2

CompletableFuture<...> start =
new CompletableFuture<>();

start.thenApply(a -> action());
start.complete(...); start.complete(...);

Results:

Occurrences Expectation Interpretation
819,755,198 ACCEPTABLE action in successful completion thread
163,205,510 ACCEPTABLE action in failed completion thread

59

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Example 3

CompletableFuture<...> start =
new CompletableFuture<>();

start.thenApply(a -> action());
start.complete(...); start.join();

Results:

Occurrences Expectation Interpretation
904,651,258 ACCEPTABLE action in completion thread
300,524,840 ACCEPTABLE action in join thread

60

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Example 4

CompletableFuture<...> start =
new CompletableFuture<>();

start.thenApply(a -> action1());
start.thenApply(a -> action2());

start.complete(...); start.join();

Results:
Occurrences Expectation Interpretation
179,525,918 ACCEPTABLE both actions in the same thread
276,608,380 ACCEPTABLE actions in different threads

61

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

What is faster?

Same thread chain
future
.thenApply((...) -> foo1())
.thenApply((...) -> foo2())

Async chain
future
.thenApplyAsync((...) -> foo1(), executor)
.thenApplyAsync((...) -> foo2(), executor);

62

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Let’s measure

63

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Let’s measure

63

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Let’s measure

63

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

CompletableFuture chaining

• thenSomethingAsync(...) – gives predictability.
• thenSomething(...) – gives performance.

64

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Avoid transition task from one thread to another.
It costs.

65

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

When predictability is important

HttpClient has the single auxiliary thread «SelectorManager».

• waits on Selector.select
• reads data from Socket
• extracts HTTP2 frames
• distributes frames to receivers

66

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads

sendAsync

Executor threads

thenCompose

thenApply(foo)

thenApply(bar)

SelectorManager

future

receiveResponse

complete

foo

bar

67

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

User threads

sendAsync

Executor threads

thenCompose

thenApply(foo)

thenApply(bar)

SelectorManager

future

receiveResponse

complete

foo

bar

foo

barDON’T!

67

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

When predictability is important

CompletableFuture<...> response;

Executor thread «SelectorManager»

...

.thenCompose(() -> response) response.complete(...);

...

ee

68

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

One way (@since 9)

CompletableFuture<...> response;

Executor thread «SelectorManager»

...

.thenCompose(() -> response) response.completeAsync(..., executor);

...

ee

69

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Another way

CompletableFuture<...> response;

Executor thread «SelectorManager»

...

.thenComposeAsync(() -> response, executor) response.complete(...);

...

ee

70

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

What we’ve got (in both cases)

• Pro:
– «SelectorManager» is protected

• Con:
– Switching from one executor thread to another executor thread

(costs).

71

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Third way

CompletableFuture<...> response;

Executor thread «SelectorManager»

CompletableFuture<...> cf = response;
if(!cf.isDone()) { response.complete(...);

cf = cf.thenApplyAsync(x -> x, executor);
}
...thenCompose(() -> cf);
...

ee

72

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

What about sendAsync performance?

Tuning complete()

⇓
+16%

73

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Carefully avoid transition task
from one thread to another.

It costs.

74

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

What if server responds quickly?

CompletableFuture<...> sendAsync(...) {
return
sendHeaderAsync(..., executor)
.thenCompose(() -> sendBody())
.thenCompose(() -> getResponseHeader())
.thenCompose(() -> getResponseBody())
...

}

Sometimes (3% cases)

CompletableFuture

is already completed

getResponseBody() is executed from user thread

75

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

We have thenComposeAsync()

• Pro:
– User thread is protected

• Con:
– Switching from one executor thread to another executor thread

(costs).

76

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Do it

CompletableFuture<...> sendAsync(...) {
CompletableFuture<Void> start = new CompletableFuture<>();

CompletableFuture<...> end = start.thenCompose(v -> sendHeader())
.thenCompose(() -> sendBody())
.thenCompose(() -> getResponseHeader())
.thenCompose(() -> getResponseBody())
...;

start.completeAsync(() -> null, executor); // trigger execution
return end;

}

77

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

What about sendAsync performance?

Delayed start
⇓

+10%

78

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

It may be useful to build chain of actions before
execution.

79

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Let’s back to CachedThreadPool

• Pro:
– If all threads are busy, the task will be executed in a new thread

• Con:
– If all threads are busy, a new thread is created

Is that a good choice for the default executor?

80

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Try different executors

CachedThreadPool 35500 ops/sec

FixedThreadPool(2) 61300 ops/sec

+72%

81

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Different ThreadPools show different performance.

82

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Q & A ?

83

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Appendix

84

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

another example of thenCompose

// e.g. how to make recursive CompletableFuture chain

CompletableFuture<...> makeRecursiveChain(...) {
if(«recursion ends normally») {

return CompletableFuture.completedFuture(...);
else if(«recursion ends abruptly») {

return CompletableFuture.failedFuture(...); // appeared in Java9
}
return CompletableFuture.supplyAsync(() -> doSomething(...))

.thenCompose((...) -> makeRecursiveChain(...));
}

A

85

86

