
Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

NoSQL + SQL = MySQL
Nicolas De Rico – Principal Solutions Architect
nicolas.de.rico@oracle.com

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement
The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract.

It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

What If I Told You…

NoSQL + SQL
?

?

?

?
…is possible?

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

MySQL 8.0
The MySQL Document Store

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

MySQL 5.0
• MySQL AB

MySQL 5.1
• Sun

Microsystems

MySQL 5.5
• Improved

Windows OS
• Performance

Schema
• Semi-sync repl

MySQL 5.6
• Robust

replication
• Stricter SQL
• Stronger

security

MySQL 5.7
• Native JSON
• Cost-based

optimizer
• Group

Replication

MySQL 8.0
• Document

Store
• Data

dictionary
• OLAP

MySQL 8.0

NDB Cluster
6.2, 6.3, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.6

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

MySQL Open Source (…Because It Makes Sense)
• GPLv2
– Slightly modified for FOSS and OpenSSL
– No extraneously restrictive licensing

• MySQL source code available on Github
–MySQL Receives many contributions from community and partners
– Development collaboration with some leading MySQL users

• Open Core business model
– Additional tools and extensions available in Enterprise Edition
– Server and client are GPL open source
• This also helps to keep the ecosystem open source

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

New! Alter Table - Instant Add Column
• Contribution from Tencent
–Only a metadata change

– No copying of data

– Smaller final data size

– Forward compatibility with old data file

• ALTER TABLE … ADD COLUMN col, ALGORITHM = INSTANT;

• Supports DYNAMIC/COMPACT/REDUNDANT row formats

Tencent
Contribution

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

MySQL Document Store

MySQL
Document

Store

JSON

NoSQL

Cluster

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Native JSON Data Type
CREATE TABLE employees (data JSON);
INSERT INTO employees VALUES ('{"id": 1, "name": "Jane"}');
INSERT INTO employees VALUES ('{"id": 2, "name": "Joe"}');

SELECT * FROM employees;
+---------------------------+
| data |
+---------------------------+
| {"id": 1, "name": "Jane"} |
| {"id": 2, "name": "Joe"} |
+---------------------------+
2 rows in set (0,00 sec)

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

JSON Data Type Specifications

• utf8mb4 default character set

• Optimized for read intensive workload

– Parse and validation on insert only

• Dictionary:

– Sorted objects' keys

– Fast access to array cells by index

• Full type range supported:

– Standard: numbers, string, bool, objects, arrays

– Extended: date, time, timestamp, datetime, others

– JSON Objects and Arrays, including embedded within each other

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

JSON Functions
JSON_ARRAY_APPEND()

JSON_ARRAY_INSERT()

JSON_ARRAY()

JSON_CONTAINS_PATH()

JSON_CONTAINS()

JSON_DEPTH()

JSON_EXTRACT()

JSON_INSERT()

JSON_KEYS()

JSON_LENGTH()

JSON_MERGE()

JSON_OBJECT()

JSON_QUOTE()

JSON_REMOVE()

JSON_REPLACE()

JSON_SEARCH()

JSON_SET()

JSON_TYPE()

JSON_UNQUOTE()

JSON_VALID()

MySQL 8.0:

JSON_TABLE()

JSON_PRETTY()

JSON_STORAGE_SIZE()

JSON_STORAGE_FREE()

JSON_ARRAYAGG()

JSON_OBJECTAGG()

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Shortcut Syntax

mysql> SELECT DISTINCT
data->’$.zoning’ AS Zoning
FROM lots;

+--------------+
| Zoning |
+--------------+
| "Commercial" |
+--------------+
1 row in set (1.22 sec)

Special new syntax to access
data inside JSON documents

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Shortcut Syntax + Unquote

mysql> SELECT DISTINCT
data->>’$.zoning’ AS Zoning
FROM lots;

+------------+
| Zoning |
+------------+
| Commercial |
+------------+
1 row in set (1.22 sec)

Special new syntax to access
data inside JSON documents +
UNQUOTE

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Indexing JSON Documents With Generated Columns
• Available as either VIRTUAL (default) or STORED:

• Both types of computed columns permit for indexes to be added as
“functional indexes”
– Use ALTER TABLE… ADD INDEX(generated_column)
– Use virtual generated columns to index JSON fields!

ALTER TABLE features
ADD feature_type varchar(30)
AS (feature->>"$.type") VIRTUAL;

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

MySQL InnoDB Cluster
• Group-based replication
– Group awareness
– Conflict detection
– Consensus 50% + 1

• Multi-primary mode
• Single primary mode
–MySQL Router

• Automated failover
• Tooling for controlling cluster

“High Availability becomes a core
first class feature of MySQL!”

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

MySQL Has Native NoSQL

Storage

Optimizer

MySQL
Connection

handling

X Plugin

MySQL Server

330633060
MySQL Shell

Existing Application

MySQL Connector/ODBC

SQ
L R
es
ul
t

Classic MySQL ProtocolX Protocol

JavaScript / Python

Node.js Application

MySQL C / Node.js

...

X DevAPI

X DevAPI

Windows Application

MySQL Connector/Net X DevAPI

GraalVM Javascript
Python
Ruby

R
…

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Node.JS Example

var schema = session.getSchema('mySchema');
var collection = schema.getCollection('myColl');
var query = "$.name == :name";
collection.find(query).bind('name','Alfredo').execute(function (doc) {

console.log(doc);
}).catch(function (err) {

console.log(err.message);
console.log(err.stack);

});

Native MySQL Programming

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Tables or Collections?

• A collection is a table with 2+ columns:

– Primary key: `_id`

– JSON document: `doc`

• The document’s `_id` field can be supplied or be automatically generated by server as UUID

• This field is also used to populate the primary key

• Can add extra columns and indexes to a collection

• SQL, NoSQL, tables, collections, all can be used simultaneously

• Operations compatible with replication

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

NoSQL + SQL Demo

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

NoSQL
• The demo uses MySQL Shell, which is part of the MySQL 8 distribution
• Create a collection in Javascript
– View what is a collection in MySQL?

• Insert JSON documents
–With and without _id

• Find JSON documents
• Update JSON documents
– Confirm the changes

• Use SQL commands on JSON documents

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Creating A Collection
Show the current database
JS> db

Change the current database
JS> \use demo

JS> db

Create a new collection
JS> var Collection=db.createCollection("architects")

JS> Collection

JS> \sql

SQL> SHOW CREATE TABLE `architects`;

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Accessing An Existing Collection
Opening a collection
JS> var Collection=db.getCollection("architects")

JS> Collection

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

The help() Function
General help
JS> Collection.help()

In-depth help
JS> Collection.help("add")

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Inserting Documents Into The Collection
The missing _id field is automatically generated.
JS> Collection.add({"name": "nicolas"})

JS> Collection.add({"name": "sastry"})

JS> Collection.add({"name": "dale"})

JS> Collection.add({"name": "michael"})

JS> Collection.add({"name": "kathy"})

JS> Collection.add({"name": "lee", "title": "manager"})

JS> Collection.add({"name": "benjamin"},{"name": "priscila"})

JS> \sql

SQL> SELECT * FROM `demo`.` architects`;

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Inserting Documents Into The Collection (cont’d)
The existing _id field is used.
JS> Collection.add({"_id": "xoxoxoxo", "name": "tony"})

JS> \sql

SQL> SELECT * FROM `demo`.` architects`;

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Retrieving Documents
All documents
JS> Collection.find()

With a condition
JS> Collection.find("name='Nicolas'")

With a bound variable
JS> var Value = "nicolas"

JS> Collection.find("name=:nm").bind("nm",Value).execute()

A single document
JS> var Document=Collection.getOne("xoxoxoxo")

JS> Document

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Modifying A Document
Add a field
JS> Collection.modify("_id='xoxoxoxo'").set("weight",150).execute()

Transform the field into an object
JS> Collection.modify("_id='xoxoxoxo'").set("dimmensions",{weight:150}).execute()

JS> Collection.modify("_id='xoxoxoxo'").unset("weight").execute()

The document already retrieved doesn’t change
JS> Document

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Deleting A Document
The remove() function
JS> Collection.help("remove")

JS> Collection.remove("_id='xoxoxoxo'")

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Creating An Index
NoSQL
JS> Collection.createIndex("nosql_index",{"fields":[{"field":"$.name","type":"TEXT(20)"}],"type":"INDEX"})

JS> \sql

SQL> SHOW CREATE TABLE `architects`;

SQL
SQL> ALTER TABLE `architects` ADD COLUMN `name` TEXT GENERATED ALWAYS AS

(JSON_UNQUOTE(JSON_EXTRACT(`doc`,_utf8mb4'$.name’))) VIRTUAL;

SQL> ALTER TABLE `architects` ADD INDEX `sql_index`(`name`(20));

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Verifying Index Is Used
The explain command
SQL> EXPLAIN SELECT * FROM `architects`;

SQL> EXPLAIN SELECT * FROM `architects` WHERE `doc`->>'$.name' = 'nicolas’;

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Bulk Importing Documents
Create collection (optional)
JS> var Restaurants = db.createCollection("restaurants")

Import documents
JS> utils.help("importJson")

JS> util.importJson("restaurants",{collection : "restaurants", convertBsonOid : true})

Search for documents
JS> Restaurants.find()

JS> Restaurants.find("name='Europa Cafe'")

JS> Restaurants.find("name='Europa Cafe' and address.street = 'Lexington Avenue'")

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Mixing SQL And JSON

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Exercise
• We are going to use the "restaurants" collection in SQL to find great

restaurants near Times Square in New York City.
• The collection has geographical locations that we can index to limit the

search of the scope to 0.5 miles around Times Square.
• We can also index the cuisine types for each restaurant so that we can

choose based on our mood.
• The restaurants collection is a standard example collection from MongoDB

(thanks Mongo!).

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Adding Indexes To The Collection
Create a Spatial index (can also be done in NoSQL)
SQL> ALTER TABLE `demo`.`restaurants`

ADD COLUMN `location` GEOMETRY

GENERATED ALWAYS AS (POINT(`doc`->>'$.address.coord[0]',`doc`->>'$.address.coord[1]'))

STORED NOT NULL SRID 0;

SQL> ALTER TABLE `demo`.`restaurants` ADD SPATIAL INDEX(`location`);

Create a full-text search index
SQL> ALTER TABLE `demo`.`restaurants` ADD COLUMN `Cuisine` TEXT

GENERATED ALWAYS AS (`doc`->>'$.cuisine') STORED;

SQL> ALTER TABLE `demo`.`restaurants` ADD FULLTEXT INDEX(`Cuisine`);

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Best Italian And Chinese Restaurants Near Times Square
WITH `CTE` AS

(SELECT `doc`->>'$.name' AS `Restaurant`,

`Cuisine`,

(SELECT AVG(`Grades`.`Score`) AS `Score`

FROM JSON_TABLE(`doc`,'$.grades[*]' COLUMNS (`Score` INT PATH '$.score')) AS

`Grades`) AS `Average`,

ST_Distance_Sphere(`location`,@TimesSq) AS `Distance`

FROM `demo`.`restaurants`

WHERE ST_Contains(ST_MakeEnvelope(POINT(ST_X(@TimesSq) + @Dist,ST_Y(@TimesSq) + @Dist),

POINT(ST_X(@TimesSq) - @Dist,ST_Y(@TimesSq) - @Dist)),

`location`)

AND MATCH(`Cuisine`) AGAINST('Italian Chinese' IN BOOLEAN MODE)

ORDER BY `Distance`) ...

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Best Italian And Chinese Restaurants Near Times Square
…

SELECT

`Restaurant`,

`Cuisine`,

RANK() OVER (PARTITION BY `Cuisine` ORDER BY `Average`) AS `Rank`,

`Distance`

FROM

`CTE`

ORDER BY

`Rank`, `Average` DESC

LIMIT 10;

Copyright © 2018 Oracle and/or its affiliates. All rights reserved.

Thank You!

