YES, | test in production.

And so should you.

By Charity Majors
(@miIpsytipsy

OREILLY"

Database
Reliability
Engmeer ng

DESIGNING AND OPERATING
RESILIENT DATABASE SYSTEMS

LiEE

oNneycoMmo

Laine Campbell & Charity Majors

@mipsytipsy
ngineer/cofounder/CEO

“the only good diff is a red diff”

ttps://charity.wtf

Parse

The Cloud Application Platform

https://charity.wtf

Testing in production has gotten a bad rap.

" " 'YOUNEVER FRIL TESTING

- Cautionary Tale .
* Punch Line

+ Serous-Strategy

“IFYOU EROMOTE STRAIGHT TO PRODUCGTION

| DON'T ALWAYS TEST MY
«~=CODE

€
v/

) |
CI
*
UT WHEN 1 DO I DO ITSIN
PRODUCTION

ormegenes ator nel

(I blame this guy)

TEST{MY/CODE IN PRODUCTION2

.
‘ - N ..
- . - -
k ,u - - .
- .
.‘ y ¥
Pl .
-~
‘
LY

IAlWAY\ ALWAYS

NEVER TEST MYII}PIIE

how they think we are

1) mlu
IN PRODUCTION

— - Tzt

how we should be

L
\

|

YOU COULD TEST BOTH
IN PROD AND BEFORE?

WHAT |r"|{mm YOU

I v g
N
. 2 -
2,

’?\\:‘

THEHE 11 ONLY:DO'OR'DOINOT,
THEIIE IS'NO TRY 5

Test(n): take measures to check the quality, performance, or reliability.

Prod(n): where your users are.

O
=
—
V)
W
—

O
=
48]
44
-
—
UL
(&
n
0
-
w
O
= |
-/
oL
2
O
>
o
=
w

Our idea of what the software development lifecycle
even looks like is overdue an upgrade in the era of
distributed systems.

Deploying code is not a binary switch.

Deploying code is a process of incréas
in your code.

Development Production

VechorStock

Observability

Scientific Graph
iInfrastructure & storage complexity
over time

“Complexity is increasing” - Science

LAMP stack => distributed systems

monitoring => observability

known unknowns => unknown unknowns

resque

go redirect ‘/’
c

ground j&s

8Iong resque
25 E

pension

4——". : " = (@)
- A/B 10S push
e Wi 't 7
/ \ winrt push m
2 = L ndroid gc
o) tBex ; -
W
N —

android ppns

_~

scrib
gofb © P

redis gprof

zookeeper
(not even gonna try to d
all the lines here)

\ o fb "
Application Application Application @ log workers herlbe 8 Direct cFannect to e
Server Server Server twerons SMC

/ \»
- logs mongo
" N Legend: smcproxy
ddos mongo “ 3 ;
=g) Rl go appsin TW,
Database v :
@ configless

Your system is never entirely ‘up’

Many catastrophic states exist at any given time.

YOU KEEP USING THAT
WORD

S A .
ey
| :

| DON'T THINK'YOU KNOW WHAT
IT MEANS

why does this matter more and more?

We are all distributed systems
engineers now

the unknowns outstrip the knowns
and unknowns are untestable

LW

Distributed systemsiare particularly.hostile to being

cloned'or imitated (or monitored).

(clients, ,concurrency, chaotic traffic patterns, edge'cases ..

Distributed systems have an infinitely long list of
that make staging
environments particularly worthless.

this is a black hole for engineering time

Only production is production.

You can ONLY verify the deploy for any env by deploying to that env

= | /Users/charity= ENV=producktion deployctl deploy

lnnnc:

YOURSELVES

" WERE TESTING IN
PRODUCTION

YOU'MEAN PI?ITIIIIGTIIIN

i

Every deploy is a *unique*
exercise of your process+
code+system

Deploy scripts are production
code. If you're using fabric or
capistrano, this means you have

fab/cap in production. @®

PROMOTE CHANGES

Staging is not production.

| WHAT THE FycK WAS |
L EveN THINKING

Why do people sink so much time into staging,
when they can't even tell if their own

is healthy or not?

You can catch 80% of the bugs with 20% of the effort.

That energy is better used elsewhere:

TE TI G INPRODUCTION

) ﬁ x",%;

v \
TELL MEMORE:

w0e Mafign Lot net

Production.

@caities PWL talk: https://youtu.be/-3tw2MYYTO0Q

You need to watch your code run with:

Y :
0000
_ __

Real data
Real users
Real traffic
Real scale
Real concurrency
Real network
Real deploys
Real unpredictabilities.

Staging != Prod

Environmental
Security differences

of user data
Cost

of duplication

Time/Effort

Uncertainty (diminishing returns)

of user patterns

Development Production

test before prod:

does it work
does my code run
does it fail in the ways i can predict
does it fail in the ways it has previously failed

prod

\4

test in prod:

behavioral tests
experiments
load tests (!!)
edge cases
canaries
weird bugs
prod data stuff
rolling deploys
multi-region

R

More reasons:

You are testing DR or chaos engineering
Beta programs where customers can try new features
Internal users get new things first
You have to test with production data
To lower the risk of deployments, you deploy more frequently
You need higher concurrency, etc to retro a bug

test before prod:

does it work
does my code run
does it fail in the ways i can predict
does it fail in the ways it has previously failed

prod

test in prod:

behavioral tests
experiments
load tests (!!)
edge cases
canaries

weird bugs
prod data stuff

Y rolling deploys
multi-region

test in staging?
meh

| SEEYOU TEST YOUR CODE IN
PRODUCTION

)

po

VEDANGEROUSLY

ITOOLIKETO LI

Risks:

Expose security vulnerabilities
Data loss or contamination
Cotenancy risks
The app may die
You might saturate a resource
No rollback if you make a permanent error
Chaos tends to cascade
May cause a user to have a bad experience

also build or use:

IAlWAYS ALWAYS

feature flags (launch darkly)
high cardinality tooling (honeycomb)
canary canary canaries,
shadow systems (goturbine, linkerd)
capture/replay for databases (apiary, percona)

T mm
IN pnonucmﬁ

plz dont build your own ffs

Be less afraid:

Feature flags
Robust isolation
Caps on dangerous behaviors
Auto scaling or orchestration
Query limits, auto throttling
Limits and alarms
Create test data with a clear naming convention
Separate credentials

Be extra wary of testing during peak load hours

- — ' - .m !
-
P
Pr
2 m 3
P B '
?u". lv.’ . ‘ - . —-vj
B fe e L m—’"\ . IMCICSAPTAIN

Failure is not rare

Practice shipping and fixing lots of small problems

And practice on your users!!

How the heck do you test this stuff ?

NETFLIX

Failure: it's “when”, not “if”"

(lots and lots and lots of “when’s”)

Does everyone ...

know what normal looks like?
know how to deploy?

know how to roll back?
know how to canary?

know how to debug in production?

4

Practicell~

um“lu%om! 10

yisr INPRODISBAD

nmmm snﬁ\un r;\\\\

BADL)) -

TEST CODE

Son a7 BB R

T RS

DL RN N Y [e

it A s i T e

) -

e

.\.\.t S 4 ’Alo'

-
[
> ° »

A

R

- . N

i3

~4

. »

memegenerator.net

INPRODUCTION

'3

WE 'I'EST IN PR

. At

!mmm WeE i

| DON'T ALWAYS TEST MY
_=CODE IAlWAY , ALWAYS

.t yeont

T IT mm
INPRODUCTION

3UT WHENIDOIDO l
PRODUCTION

momegenes ator . ndl

Charity Majors
@mipsytipsy

ﬁ \ 4
~

