
YES, I test in production.
And so should you.

By Charity Majors
@mipsytipsy

@mipsytipsy
engineer/cofounder/CEO

https://charity.wtf

“the only good diff is a red diff”

https://charity.wtf

Testing in production has gotten a bad rap.

• Cautionary Tale
• Punch Line
• Serious Strategy

(I blame this guy)

how they think we are

how we should be

Test(n): take measures to check the quality, performance, or reliability.

Prod(n): where your users are.

"Testing in production" should not be used as an
excuse to skimp on testing or spend less.

I am here to tell you how to
test *better*, not to help you

half-ass it.

Our idea of what the software development lifecycle
even looks like is overdue an upgrade in the era of

distributed systems.

Deploying code is not a binary switch.

Deploying code is a process of increasing your confidence
in your code.

Development Production

deploy

Observability
Development Production

Observability
Development Production

why now?

“Complexity is increasing” - Science

Parse, 2015LAMP

monitoring => observability
known unknowns => unknown unknowns

LAMP stack => distributed systems

Many catastrophic states exist at any given time.

Your system is never entirely ‘up’

We are all distributed systems
engineers now

the unknowns outstrip the knowns
and unknowns are untestable

why does this matter more and more?

Distributed systems are particularly hostile to being
cloned or imitated (or monitored).

(clients, concurrency, chaotic traffic patterns, edge cases …)

Distributed systems have an infinitely long list of almost-
impossible failure scenarios that make staging

environments particularly worthless.

this is a black hole for engineering time

Only production is production.

You can ONLY verify the deploy for any env by deploying to that env

1. Every deploy is a *unique*
exercise of your process+  
code+system

2. Deploy scripts are production
code. If you’re using fabric or
capistrano, this means you have
fab/cap in production. 😳

Staging is not production.

Why do people sink so much time into staging,
when they can’t even tell if their own

production environment is healthy or not?

That energy is better used elsewhere:

Production.

You can catch 80% of the bugs with 20% of the effort. And you should.

@caitie’s PWL talk: https://youtu.be/-3tw2MYYT0Q

Real data
Real users
Real traffic
Real scale
Real concurrency
Real network
Real deploys
Real unpredictabilities.

You need to watch your code run with:

Staging != Prod

Security
of user data

Cost
of duplication

Time/Effort
(diminishing returns)Uncertainty

of user patterns

Environmental
differences

Development Production

deploy

prod

does it work
does my code run

does it fail in the ways i can predict
does it fail in the ways it has previously failed

test before prod:

prod

behavioral tests
experiments
load tests (!!)
edge cases

canaries
weird bugs
data stuff

rolling deploys
multi-region

test in prod:

You are testing DR or chaos engineering
Beta programs where customers can try new features

Internal users get new things first
You have to test with production data

To lower the risk of deployments, you deploy more frequently
You need higher concurrency, etc to retro a bug

More reasons:

prod

does it work
does my code run

does it fail in the ways i can predict
does it fail in the ways it has previously failed

test before prod:

Known unknowns

prod

behavioral tests
experiments
load tests (!!)
edge cases

canaries
weird bugs
data stuff

rolling deploys
multi-region

test in prod:

Unknown unknowns (everything else)

test in staging?
meh

Expose security vulnerabilities
Data loss or contamination

Cotenancy risks
The app may die

You might saturate a resource
No rollback if you make a permanent error

Chaos tends to cascade
May cause a user to have a bad experience

Risks:

feature flags (launch darkly)
high cardinality tooling (honeycomb)

canary canary canaries,
shadow systems (goturbine, linkerd)

capture/replay for databases (apiary, percona)

also build or use:

plz dont build your own ffs

Feature flags
Robust isolation

Caps on dangerous behaviors
Auto scaling or orchestration
Query limits, auto throttling

Limits and alarms
Create test data with a clear naming convention

Separate credentials
Be extra wary of testing during peak load hours

Be less afraid:

Failure is not rare
Practice shipping and fixing lots of small problems

And practice on your users!!

Failure: it’s “when”, not “if”
(lots and lots and lots of “when’s”)

Does everyone …

know what normal looks like?
know how to deploy?

know how to roll back?
know how to canary?

know how to debug in production?

Practice!!~

•

Charity Majors
@mipsytipsy

