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Which artwork to show?
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A good image is...
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Intuition: Preferences in cast members
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Intuition: Preferences in genre
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Challenges in Artwork
Personalization



Everything is a Recommendation
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Attribution

Pick
only one

= ()

Was it the recommendation or artwork?
Or both?
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Change Effects
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Which one caused the play?
Is change confusing?
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Adding meaning and avoiding clickbait

e Creatives select the images that are available
e But algorithms must be still robust

NETFLIX
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Traditional Recommendations
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Collaborative Filtering:
Recommend items that

similar users have chosen

Members can only play
images we choose

NETFLIX



Nﬁﬁ!
%]

fEmm i

- e m -

-

- emmeee  ww

>

& CRTMTETOTETOTETOTITOTY



Bandit
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https://commons.wikimedia.org/wiki/File:Las_Vegas_slot_machines.jpg

Multi-Armed Bandits (MAB)

e Multiple slot machines with

unknown reward distribution
e A gambler can play one arm at a time

e Which machine to play to maximize

reward?

NETFLIX



Bandit Algorithms Setting

Action

Learner

(Policy)

Each round:

Learner chooses an action

Reward

Environment

Environment provides a real-valued reward for action

Learner updates to maximize the cumulative reward

NETFLIX



Artwork Optimization as Bandit

Artwork Selector
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P
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e Environment: Netflix homepage

" A T

e Learner: Artwork selector for a show
e Action: Display specific image for show

e Reward: Member has positive engagement

NETFLIX



Images as Actions

e What images should creatives provide?
o Variety of image designs

o Thematic and visual differences |

o
-j

e How manyimages?

o Creating each image has a cost ‘- =, srTnggv*"

o Diminishing returns

NETFLIX



Designing Rewards

e Whatis a good outcome?

v Watching and enjoying the content

e Whatis a bad outcome?

® Noengagement

® Abandoning or not enjoying the

content

NETFLIX



Metric: Take Fraction

Example: Altered Carbon
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Minimizing Regret

e Whatis the best that a bandit can do?  ,,, — =gree

— Bayesian UCB
— Thompson Sampling

o Always choose optimal action

e Regret: Difference between optimal

Cumulative Regret

action and chosen action

e To maximize reward, minimize the =

cumulative regret 0 1000 2000 3000 4000 5000

Round
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Bandit Example
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Bandit Example
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Bandit Example Observed
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Strategy

. Try another image to learn
Show current best image VS.

if it is actually better

L O'SETEClsS'P A C E

Maximization Exploration
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Principles of Exploration

e Gather information to make the best overall decision

in the long-run

e Bestlong-term strategy may involve short-term
sacrifices

NETFLIX



Common strategies

1. Naive Exploration
2. Optimism in the Face of Uncertainty
3. Probability Matching

NETFLIX



Naive Exploration: e-greedy

0
e Idea: Add a noise to the greedy policy «éé)
YU

e Algorithm:
o With probability €
m Choose one action uniformly at random
o Otherwise
m Choose the action with the best reward so far
e Pros: Simple

e Cons: Regretis unbounded

NETFLIX



Epsilon-Greedy Example
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Epsilon-Greedy Example
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Epsilon-Greedy Example
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Epsilon-Greedy Example
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Optimism: Upper Confidence Bound (UCB)

e Idea: Prefer actions with uncertain values

e Approach:

o Compute confidence interval of observed rewards
for each action

o Choose action a with the highest a-percentile

o Observe reward and update confidence interval
for a

e Pros: Theoretical regret minimization properties

e Cons: Needs to update quickly from observed rewards

NETFLIX



Beta-Bernoulli Distribution

Beta Bernoulli
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https://en.wikipedia.org/wiki/Beta_distribution

Bandit Example with Beta-Bernoulli
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Bayesian UCB Example
. L 2 Reward 95%
EEE HEQHE‘E Confidence

o2 0 1 1 2| [0.15085] /\

LOST SieSPACE

0 0 ? [0.01,0.71] i

0 1 0 ? | [0.07,0.81] / L

NETFLIX



Bayesian UCB Example
. L 2 Reward 95%
EEE HEQHE‘E Confidence

o2 0 1 1 2 || [0.15085] /\

LOST SieSPACE

0 0 ? [0.01,0.71] i

0 1 0 ? | [0.07,0.81] / L

NETFLIX



Bayesian UCB Example
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Bayesian UCB Example
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Probabilistic: Thompson Sampling

e Idea: Select the actions by the probability they are the best

e Approach:

o Keep a distribution over model parameters for each action

o Sample estimated reward value for each action

o Choose action a with maximum sampled value

o QObserve reward for action a and update its parameter distribution
e Pros: Randomness continues to explore without update

e Cons: Hard to compute probabilities of actions

NETFLIX



Thompson Sampling Example
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Thompson Sampling Example
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Thompson Sampling Example
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Thompson Sampling Example
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Many Variants of Bandits

Standard setting: Stochastic and stationary

Drifting: Reward values change over time

Adversarial: No assumptions on how rewards are generated
Continuous action space

Infinite set of actions

e Varying set of actions over time

NETFLIX



What about personalization?



Contextual Bandits

Let’s make this harder!

Slot machines where payout depends on

context

E.g. time of day, blinking light on slot

machine, ...

NETFLIX



Contextual Bandit

Each round:

Context
< .
Learner Action :
) Environment
(Policy) » Reward

Environment provides context (feature) vector

Learner chooses an action for context

Environment provides a real-valued reward for action in context

Learner updates to maximize the cumulative reward

NETFLIX



Supervised Learning

Input: Features (xR
Output: Predicted label
Feedback: Actual label (y)

Contextual Bandits

Input: Context (xeRO)

Output: Action (a = z(x))
Feedback: Reward (reR)

NETFLIX



Supervised Learning

Label

7 - Cat Dog

= - Dog / Dog

- Dog \/ Dog

Example Chihuahua images from

Contextual Bandits

Reward

Catx 0)

Seal x 0

27?7 NETFLIX


http://image-net.org/synset?wnid=n02084071

Artwork Personalization
as Contextual Bandit

e Context: Member, device, page, etc.

NETFLIX



Epsilon Greedy Example
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Greedy Policy Example

e Learnasupervised regression model per image to predict reward

e Pickimage with highest predicted reward

Image Pool

Member
(context)
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LinUCB Example

e Linear model to calculate uncertainty in reward estimate

e Choose image with highest a-percentile predicted reward value

Image Pool

Features
——pp | Model 1
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https://arxiv.org/pdf/1003.0146.pdf

Thompson Sampling Example

e Learn distribution over model parameters (e.g. Bayesian Regression)

e Sample a model, evaluate features, take arg max

Model 1
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Features | o, . .
i Sample 1
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http://papers.nips.cc/paper/4321-an-empirical-evaluation-of-thompson-sampling

Offline Metric: Replay
3 H & B

Logged
Actions

Model
Assignments

Offline Take Fraction: 2/3 Lietal., 2011
NETFLIX



https://arxiv.org/pdf/1003.5956.pdf

Replay

e Pros
o Unbiased metric when using logged probabilities
o Easytocompute
o Rewards observed are real
e Cons
o Requires a lot of data
o High variance due if few matches
m Techniques like Doubly-Robust estimation (Dudik, Langford
& Li, 2011) can help

NETFLIX



Offline Replay Results

Random
Bandit

Contextual Bandit

Take fraction

Lift in Replay in the various algorithms as
compared to the Random baseline

Bandit finds good images
Personalization is better
Artwork variety matters

Personalization wiggles

around best images
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Bandits in the Real
World



A/B testing Bandit Algorithms

e Getting started

o Need data to learn

o Warm-starting via batch learning from existing data
e Closing the feedback loop

o Only exposing bandit to its own output
e Algorithm performance depends data volume

o Need to be able to test bandits at large scale, head-to-head

NETFLIX



Starting the Loop Completing the Loop
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Scale Challenges

e Need to serve an image for any title in the catalog
o Calls from homepage, search, galleries, etc.
o >20M RPS at peak
e Existing Ul code written assuming image lookup is fast
o In memory map of video ID to URL
o Want to insert Machine Learned model

o Don’t want a big rewrite across all Ul code

NETFLIX



Live Compute

Synchronous computation
to choose image for title in
response to a member
request

Online Precompute

Asynchronous computation
to choose image for title
before request and stored in
cache

NETFLIX



Live Compute

Pros:
e Access to most fresh data
e Knowledge of full context
e Compute only what is necessary
Cons:
e Strict Service Level Agreements
o Must respond quickly in all
cases
o Requires high availability
e Restricted to simple algorithms

See for more details

Online Precompute

Pros:
Can handle large data
Can run moderate complexity
algorithms
Can average computational
cost across users
Change from actions
Cons:
e Has some delay
e Donein event context
e Extra compute for users and
items not served

NETFLIX



https://medium.com/netflix-techblog/system-architectures-for-personalization-and-recommendation-e081aa94b5d8

System Architecture
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Precompute & Image Lookup

e Precompute
o Run bandit for each title on each profile to - -~
choose personalized image h LV&..CIChC
o Store the title to image mapping in EVCache
e Image Lookup
o Pull profile’s image mapping from EVCache

once per request

NETFLIX



Logging & Reward

e Precompute Logging

O

O

O

O

Selected image
Exploration Probability
Candidate pool

Snapshot facts for feature generation

e Reward Logging

O

O

Image rendered in Ul & if played

Precompute ID

NETFLIX


https://i.ytimg.com/vi/YWSUrGwRwTI/hqdefault.jpg

Feature Generation & Training

Join rewards with snapshotted facts

Generate features using Del orean

o Feature encoders are shared online and offline

Train the model using Spark

Publish model to production

Delorean image by JMortonPhoto.com & OtoGodfrey.com

NETFLIX


https://medium.com/netflix-techblog/distributed-time-travel-for-feature-generation-389cccdd3907
http://jmortonphoto.com
http://otogodfrey.com

Monitoring and Resiliency

Track the quality of the model
- Compare prediction to actual behavior
- Online equivalents of offline metrics

Reserve a fraction of data for a simple
policy (e.g. e-greedy) to sanity check
bandits

NETFLIX



Graceful Degradation

e Missing images greatly degrade the member experience

e Tryto serve the bestimage possible

Personalized Unpersonalized Default Image
Selection Fallback (when all else fails)

NETFLIX



Does it work?



Online results

A/B test: It works!
o mm\ M

Rolled out to our >130M member base & ( ' m p

Most beneficial for lesser known titles

Competition between titles for

attention leads to compression of

Ofﬂ Ine metrICS More details in our blog post

NETFLIX


https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

Future Work



More dimensions to personalize

NETFLIX ORIGINAL
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Automatic image selection

e Generating new artwork is costly and time consuming
e Can we predict performance from raw image?
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Artwork selection orchestration

e Neighboring image selection influences result

Example: Stand-up comedy
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Long-term Reward: Road to
Reinforcement Learning
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e RL involves multiple actions and delayed reward

e Useful to maximize user long-term joy?

NETFLIX



Thank you



