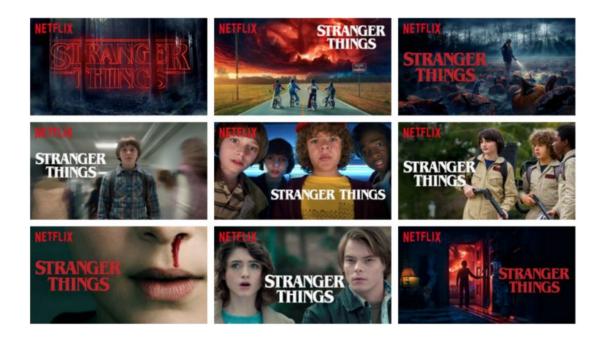
Artwork Personalization at Netflix

Justin Basilico QCon SF 2018 2018-11-05

NETFLIX

Which artwork to show?



A good image is...

- 1. Representative
- 2. Informative
- 3. Engaging
- 4. Differential

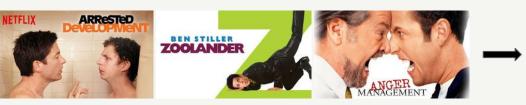
A good image is...

- 1. Representative
- 2. Informative
- 3. Engaging
- 4. Differential

Personal

Intuition: Preferences in cast members

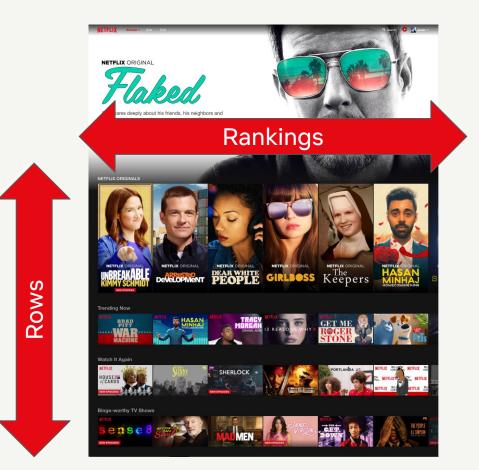
Intuition: Preferences in genre



Choose artwork so that members understand if they will likely enjoy a title to maximize satisfaction and retention

Challenges in Artwork Personalization

Everything is a Recommendation



Over 80% of what people watch comes from our recommendations

Attribution

Was it the recommendation or artwork? Or both?

Change Effects

Day 1

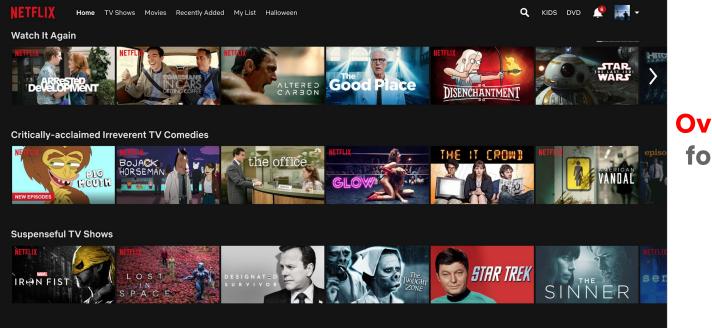
Day 2

Which one caused the play? Is change confusing?

Adding meaning and avoiding clickbait

- Creatives select the images that are available
- But algorithms must be still robust

Scale



Over 20M RPS for images at peak

Traditional Recommendations

	•	2	••••	N	v _i v
STRANGER THINGS	0	1	ο	1	0
IROGUL ONE	0	0	1	1	0
BRIGHT	1	0	0	1	1
Mastero(None	0	1	ο	0	0
HOUSEMENTERROS	0	0	0	0	1

Items

Users

Collaborative Filtering:

Recommend items that

similar users have chosen

Members can only play images we choose

Bandit

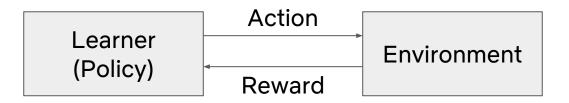
Not that kind of Bandit

Image from Wikimedia common

Multi-Armed Bandits (MAB)

- Multiple slot machines with unknown reward distribution
- A gambler can play one arm at a time
- Which machine to play to maximize reward?

Bandit Algorithms Setting



Each round:

- Learner chooses an **action**
- Environment provides a real-valued **reward** for action
- Learner updates to **maximize the cumulative reward**

Artwork Optimization as Bandit

- Environment: Netflix homepage
- Learner: Artwork selector for a show
- **Action**: Display specific image for show
- **Reward**: Member has positive engagement

Images as Actions

- What images should creatives provide?
 - Variety of image designs
 - Thematic and visual differences
- How many images?
 - Creating each image has a cost
 - Diminishing returns

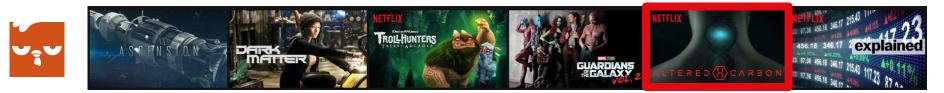
Designing Rewards

- What is a good outcome?
 - ✓ Watching and enjoying the content

- What is a **bad outcome**?
 - × No engagement
 - Abandoning or not enjoying the content

Metric: Take Fraction

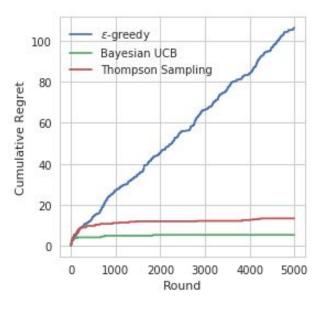
Example: Altered Carbon



Take Fraction: 1/3

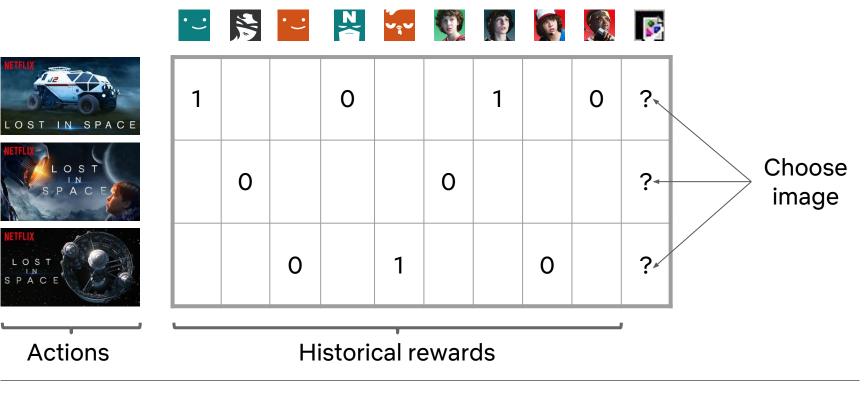
Minimizing Regret

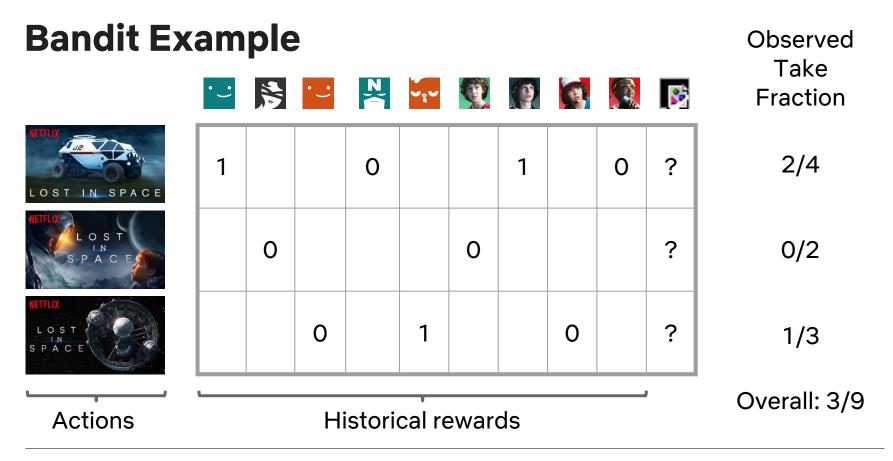
- What is the best that a bandit can do?
 - Always choose optimal action
- **Regret**: Difference between optimal action and chosen action
- To maximize reward, **minimize the** cumulative regret



Bandit Example

Bandit Example





Strategy

Show current best image

Try another image to learn if it is actually better

VS.

Maximization

Exploration

Principles of Exploration

- Gather information to make the best overall decision in the long-run
- Best long-term strategy may involve short-term sacrifices

Common strategies

- 1. Naive Exploration
- 2. Optimism in the Face of Uncertainty
- 3. Probability Matching

Naive Exploration: *e*-greedy

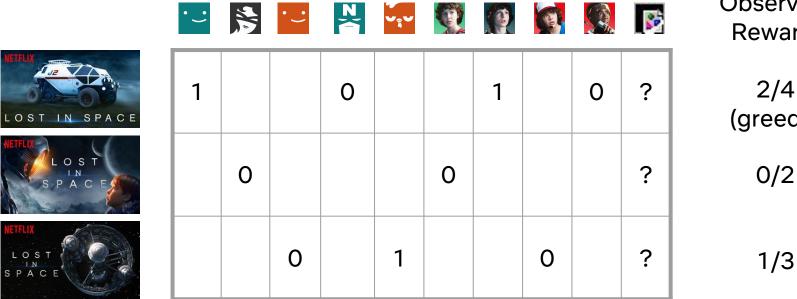
- Idea: Add a noise to the greedy policy
- Algorithm:
 - With probability ϵ
 - Choose one action uniformly at random
 - Otherwise
 - Choose the action with the best reward so far
- Pros: Simple
- Cons: Regret is unbounded

Epsilon-Greedy Example

OST

LOST

SPACE

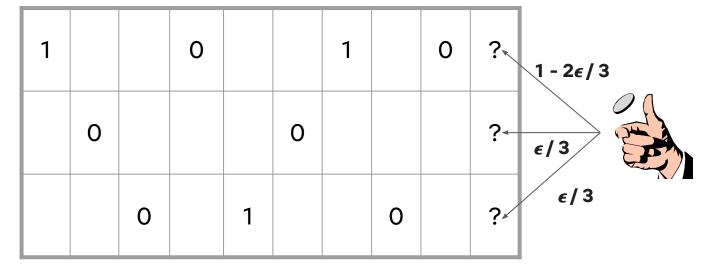


Observed Reward

2/4 (greedy)

1/3

Epsilon-Greedy Example



Epsilon-Greedy Example

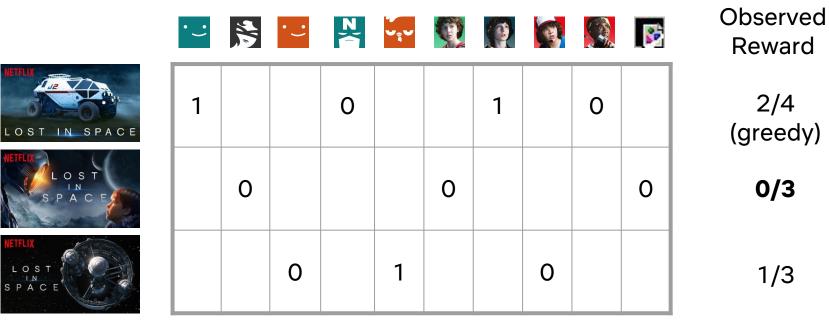
1			0			1		0	?	
	0				0				?	
		0		1			0		?	

Epsilon-Greedy Example

OST

LOST

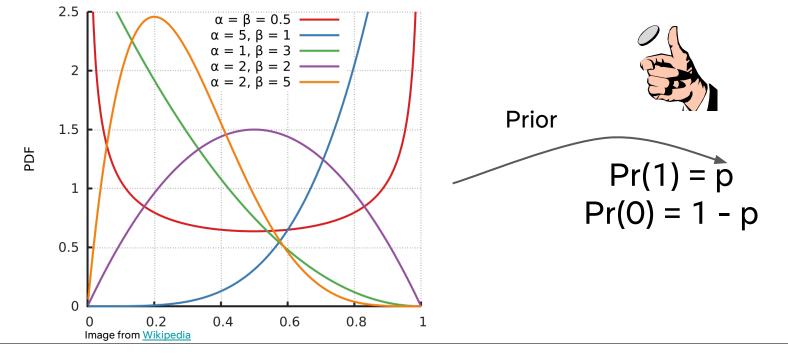
SPACE



Optimism: Upper Confidence Bound (UCB)

- Idea: Prefer actions with uncertain values
- Approach:
 - Compute confidence interval of observed rewards for each action
 - Choose action **a** with the highest α -percentile
 - Observe reward and update confidence interval for **a**
- Pros: Theoretical regret minimization properties
- Cons: Needs to update quickly from observed rewards

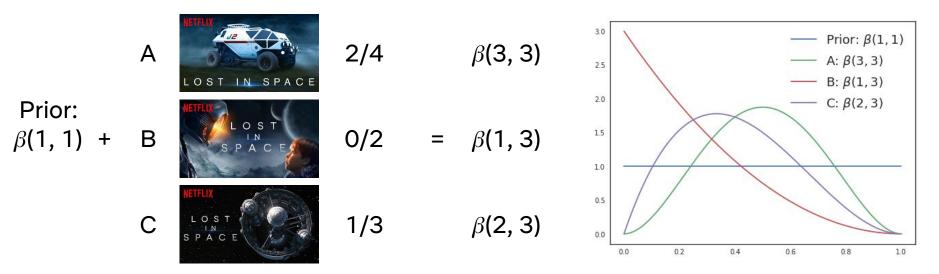
Beta-Bernoulli Distribution



NETFLIX

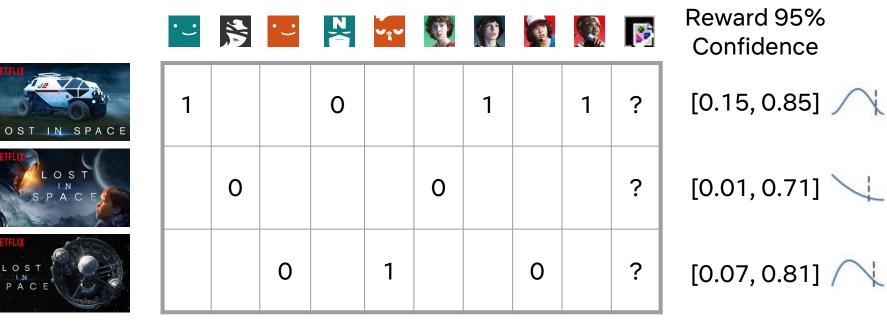
Bandit Example with Beta-Bernoulli

Observed Take Fraction



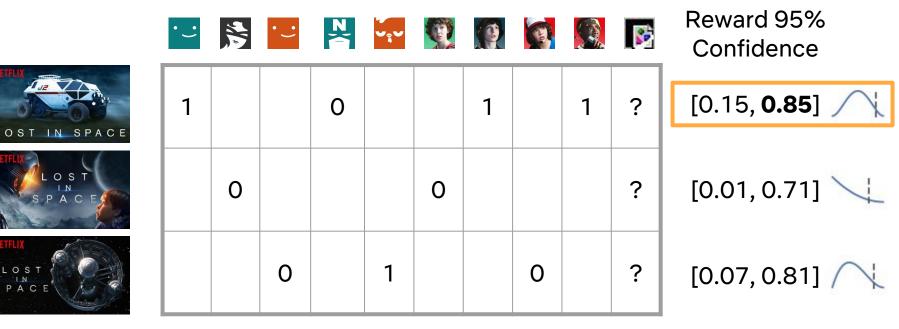
LOST

SPACE



LOST

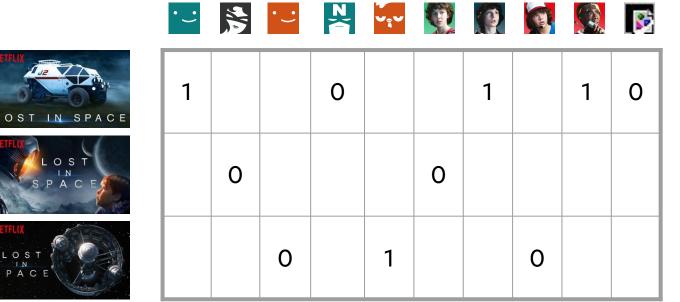
SPACE



OST

LOST

SPACE



Reward 95% Confidence

[0.01, 0.71]

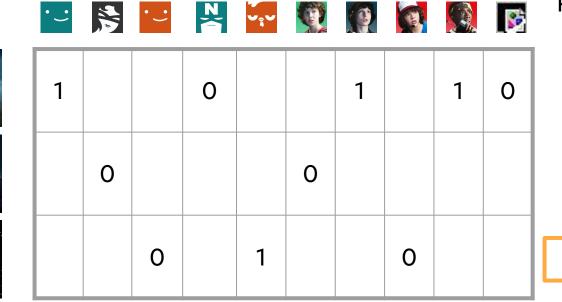
[0.07, 0.81]

OST IN SPACE

OST

LOST

SPACE



Reward 95% Confidence

[0.12, 0.78] //

[0.01, 0.71]

[0.07, 0.81]

Probabilistic: Thompson Sampling

- Idea: Select the actions by the probability they are the best
- Approach:
 - Keep a distribution over model parameters for each action
 - Sample estimated reward value for each action
 - Choose action **a** with maximum sampled value
 - Observe reward for action **a** and update its parameter distribution
- Pros: Randomness continues to explore without update
- Cons: Hard to compute probabilities of actions

ビ 🛸 🔛 🐼 🕼 🔯 🕼

1			0			1		0	?
	0				0				?
		0		1			0		?

$$\beta(3, 3) = \gamma$$

$$\beta(2,3) = \bigwedge$$

LOST IN SPACE

LOST

SPACE

OST

5 1 0 1 0 ? ? 0 0 0 0 ? 1

Sampled values

0.38

0.18

0.59

OST

LOST

SPACE

Sampled ビ 😫 🔛 🕺 🚾 🔯 5 values 0.38 1 0 1 0 ? LOST IN SPACE ? 0 0.18 0 ? 0 0 1 0.59

ビ 📚 ビ 🛃 🚾 💱 👰 🚺 🔯 🎼 🛛 Dis

1			0			1		0	
	0				0				
		0		1			0		1

Distribution

0

Many Variants of Bandits

- Standard setting: Stochastic and stationary
- **Drifting**: Reward values change over time
- **Adversarial**: No assumptions on how rewards are generated
- **Continuous** action space
- Infinite set of actions
- Varying set of actions over time

• ...

What about personalization?

Contextual Bandits

• Let's make this harder!

• Slot machines where payout depends on context

• E.g. time of day, blinking light on slot machine, ...

Contextual Bandit

Each round:

- Environment provides **context** (feature) vector
- Learner chooses an **action** for context
- Environment provides a real-valued **reward** for action in context
- Learner updates to **maximize the cumulative reward**

Supervised Learning

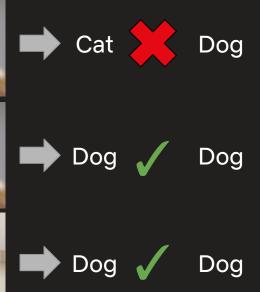
Input: Features (x∈ℝ^d) Output: Predicted label Feedback: Actual label (y)

Contextual Bandits

Input: Context ($x \in \mathbb{R}^d$) **Output**: Action ($a = \pi(x)$) **Feedback**: Reward ($r \in \mathbb{R}$)

Supervised Learning

Label



Contextual Bandits

Reward

NETFLIX

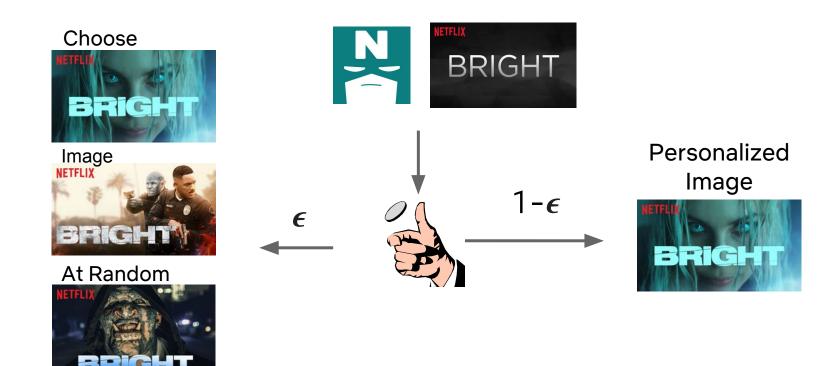
???

Example Chihuahua images from ImageNet

Artwork Personalization as Contextual Bandit

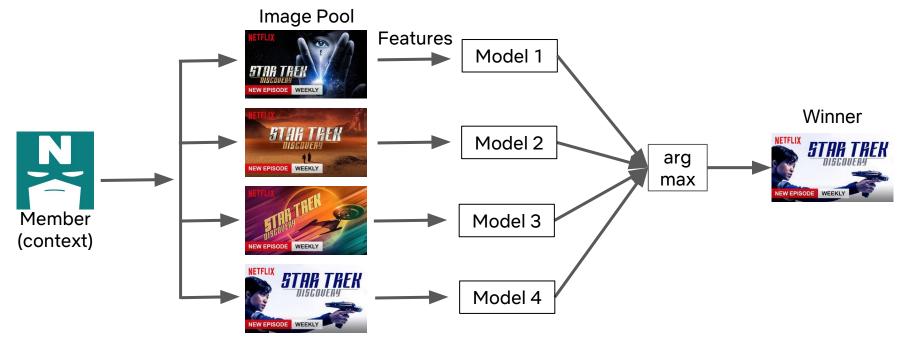
• **Context**: Member, device, page, etc.

Epsilon Greedy Example



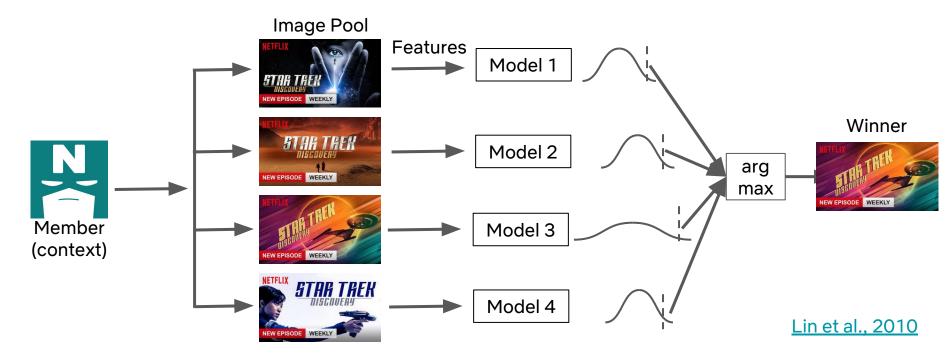
Greedy Policy Example

- Learn a supervised regression model per image to predict reward
- Pick image with highest predicted reward

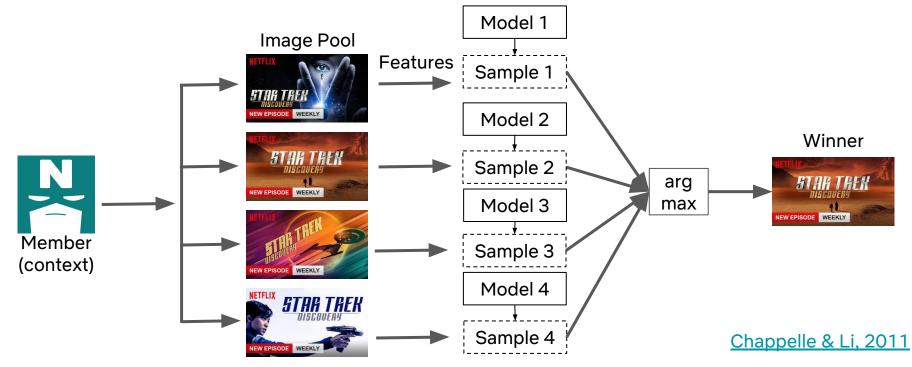


LinUCB Example

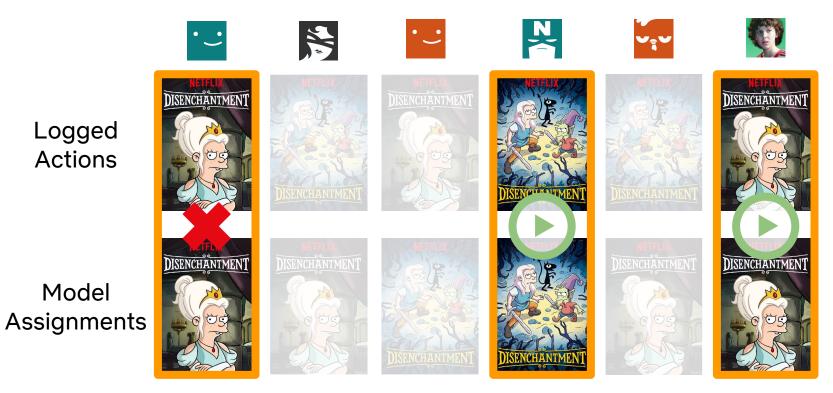
- Linear model to calculate uncertainty in reward estimate
- Choose image with highest α -percentile predicted reward value



- Learn distribution over model parameters (e.g. Bayesian Regression)
- Sample a model, evaluate features, take arg max



Offline Metric: Replay



Offline Take Fraction: 2/3

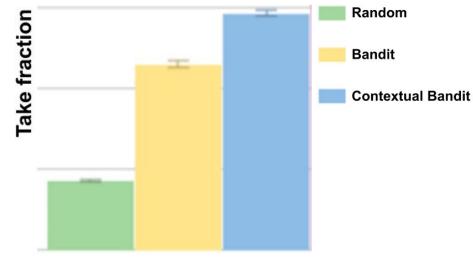
Li et al., 2011

NETFLIX

Replay

- Pros
 - **Unbiased** metric when using logged probabilities
 - Easy to compute
 - Rewards observed are real
- Cons
 - Requires a lot of data
 - High variance due if few matches
 - Techniques like Doubly-Robust estimation (Dudik, Langford & Li, 2011) can help

Offline Replay Results



Lift in Replay in the various algorithms as compared to the Random baseline

- Bandit finds good images
- Personalization is better
- Artwork variety matters
- Personalization wiggles around best images

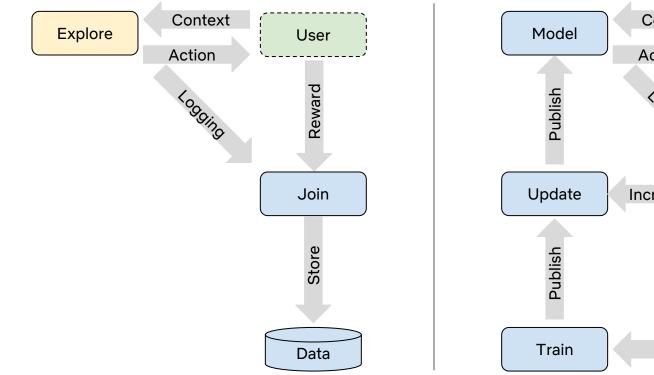
Bandits in the Real World

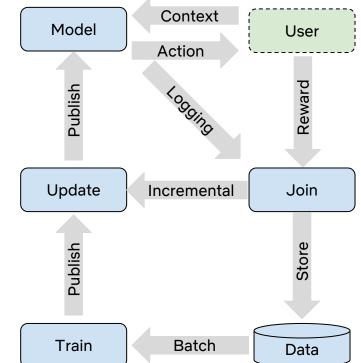
A/B testing Bandit Algorithms

- Getting started
 - Need data to learn
 - Warm-starting via batch learning from existing data
- Closing the feedback loop
 - Only exposing bandit to its own output
- Algorithm performance depends data volume
 - Need to be able to test bandits at large scale, head-to-head

Starting the Loop

Completing the Loop





NETFLIX

Scale Challenges

- Need to serve an image for any title in the catalog
 - Calls from homepage, search, galleries, etc.
 - > 20M RPS at peak
- Existing UI code written assuming image lookup is fast
 - In memory map of video ID to URL
 - Want to insert Machine Learned model
 - Don't want a big rewrite across all UI code

Live Compute

Online Precompute

Synchronous computation to choose image for title in response to a member request Asynchronous computation to choose image for title before request and stored in cache

Live Compute

Pros:

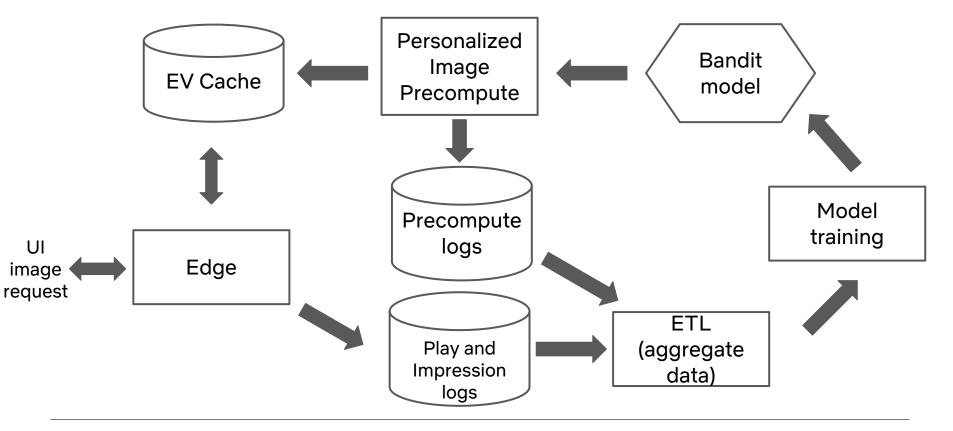
- Access to most **fresh** data
- Knowledge of **full context**
- Compute only what is necessary Cons:
- Strict Service Level Agreements
 - Must respond quickly in all cases
 - Requires high availability
- Restricted to simple algorithms

Online Precompute

Pros:

- Can handle large data
- Can run moderate complexity algorithms
- Can average computational cost across users
- Change from actions Cons:
 - Has some **delay**
 - Done in **event context**
 - **Extra compute** for users and items not served

System Architecture



Precompute & Image Lookup

- Precompute
 - Run bandit for each title on each profile to choose personalized image

- Store the title to image mapping in EVCache
- Image Lookup
 - Pull profile's image mapping from EVCache once per request

Logging & Reward

- Precompute Logging
 - Selected image
 - Exploration Probability
 - Candidate pool
 - Snapshot facts for feature generation
- Reward Logging
 - Image rendered in UI & if played
 - Precompute ID

Image via YouTube

Feature Generation & Training

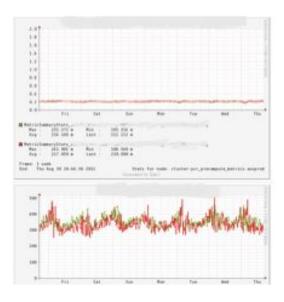
- Join rewards with snapshotted facts
- **Generate** features using <u>DeLorean</u>
 - Feature encoders are shared online and offline
- **Train** the model using Spark
- **Publish** model to production

Monitoring and Resiliency

Track the **quality** of the model

- Compare prediction to actual behavior
- Online equivalents of offline metrics

Reserve a fraction of data for a simple policy (e.g. ϵ -greedy) to sanity check bandits



Graceful Degradation

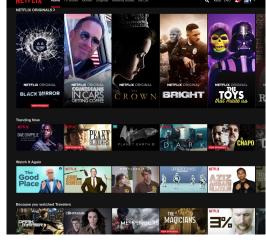
- Missing images greatly degrade the member experience
- Try to serve the best image possible

Personalized Selection Unpersonalized Fallback Default Image (when all else fails)

Does it work?

Online results

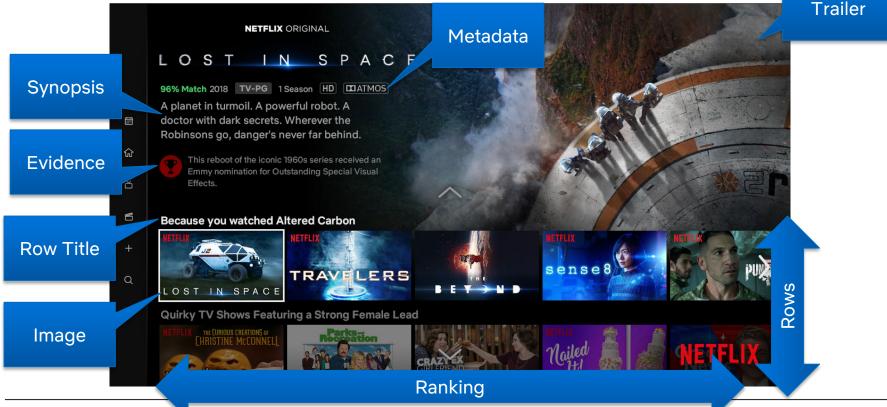
- A/B test: It works!
- Rolled out to our >130M member base
- Most beneficial for lesser known titles
- Competition between titles for attention leads to compression of offline metrics



More details in our blog post

Future Work

More dimensions to personalize



Automatic image selection

- Generating new artwork is costly and time consuming
- Can we predict performance from raw image?



Artwork selection orchestration

• Neighboring image selection influences result

Example: Stand-up comedy

Row A (microphones)

Row B (more variety)

Long-term Reward: Road to Reinforcement Learning

- RL involves multiple actions and delayed reward
- Useful to maximize user long-term joy?

Thank you



