
BPF
Turning Linux into a
Microservices-aware
Operating System

About the Speaker
Thomas Graf
● Linux kernel developer for ~15 years working on

networking and security
● Helped write one of the biggest monoliths ever
● Worked on many Linux components over the years (IP,

TCP, routing, netfilter/iptables, tc, Open vSwitch, …)
● Creator of Cilium to leverage BPF in a cloud native and

microservices context
● Co-Founder & CTO of the company building Cilium

2

Agenda
● Evolution of running applications

○ From single task processes to microservices
● Problems of the Linux kernel

○ The kernel
● What is BPF?

○ Turning Linux into a modern, microservices-aware operating system
● Cilium - BPF-based networking security for microservices

○ What is Cilium?
○ Use Cases & Deep Dive

● Q&A

3

Evolution: Running applications

Split the CPU and
memory. Shared
libraries, package
management, Linux
distributions.

4

Virtualization
Microservices

Containers
Multi tasking

Ship the OS together
with application and run
it in a VM for better
resource isolation.
Virtualized hardware
and software defined
infrastructure.

Dark Age:
Single tasking

The simple age. Back to a shared
operating system.
Applications directly
interact with the host
operating system again.

Problems of the
Linux Kernel in the
age of microservices

5

Problem #1: Abstractions

6

ProcessProcess

HW

System Call Interface

IPv4

Netdevice / Drivers

Sockets

Ethernet

TCP

IPv6

Netfilter

UDP Raw

Traffic Shaping

Bridge OVS ..

The Linux kernel is split into layers to
provide strong abstractions.

Pros:

● Strong userspace API compatibility
guarantee. A 20 years old binary still
works.

● Majority of Linux source code is not
hardware specific.

Cons:

● Every layer pays the cost of the
layers above and below.

● Very hard to bypass layers.

Problem #2: Per subsystem APIs

7

ProcessProcess

HW

System Call Interface

IPv4

Netdevice / Drivers

Sockets

Ethernet

TCP

IPv6

Netfilter

UDP Raw

Traffic Shaping

Bridge OVS

iptablesseccomp tcethtool

..

ip
brctl /
ovsctl

tcpdump

8

Problem #3: Development Process

The Good:
● Open and transparent process
● Excellent code quality
● Stability
● Available everywhere
● Almost entirely vendor neutral

The Bad:
● Hard to change
● Shouting is involved (getting better)
● Large and complicated codebase
● Upstreaming code is hard, consensus has to

be found.
● Upstreaming is time consuming
● Depending on the Linux distribution,

merged code can take years to become
generally available

● Everybody maintains forks with 100-1000s
backports

9

Problem #4: What is a container?
What the kernel knows about:
● Processes & thread groups
● Cgroups

○ Limits and accounting of CPU,
memory, network, … Configured by
container runtime.

● Namespaces
○ Isolation of process, CPU, mount,

user, network, IPC, cgroup, UTS
(hostname). Configured by container

○ runtime
● IP addresses & port numbers

○ Configured by container networking
● System calls made & SELinux context

○ Optionally configured by container
runtime

What the kernel does not know:
● Containers or Kubernetes pods

○ There is no container ID in the kernel
● Exposure requirements

○ The kernel no longer knows whether
an application should be exposed
outside of the host or not.

● API calls made between containers/pods
○ Awareness stops at layer 4 (ports).

While SELinux can control IPC, it can’t
control service to service API calls.

● Servicemesh, huh?

What now? Alternatives?

Linus was wrong. The
app should provide its
own OS.

10

Move OS to
Userspace

Rewrite
Everything?Unikernel

We don’t need kernel
mode for most of the
logic. Build on top of a
minimal Linux.

Examples: ClickOS,
MirageOS, Rumprun, ...

Give user
space access
to hardware

Examples: User mode
Linux, gVisor, ...

Expose the hardware
directly to user space.
It will be fine.

Examples: DPDK,
UDMA, ..

Total Estimated Cost
to Develop Linux
(average salary =
$75,662.08/year,
overhead = 2.40).
$1,372,340,206

What is BPF?
Highly efficient sandboxed
virtual machine in the Linux
kernel making the Linux kernel
programmable at native
execution speed.

Jointly maintained by Cilium
and Facebook with
collaborations from Google,
Red Hat, Netflix, Netronome,
and many others.

11

$ clang -target bpf -emit-llvm -S \
 32-bit-example.c
$ llc -march=bpf 32-bit-example.ll
$ cat 32-bit-example.s
 cal:
 r1 = *(u32 *)(r1 + 0)
 r2 = *(u32 *)(r2 + 0)
 r2 += r1
 *(u32 *)(r3 + 0) = r2
 exit

The Linux kernel is event driven

12

Process Process

CPU RAM MMU NIC Disk Disk

System Call Interface

USB

Drivers

12M lines of source code

Process Process

System calls

Interrupts

Run BPF program on event

13

Process

NICDisk

Process

BPF

BPF

BPF

IO
 R

e
ad

S
e

n
d

 n
e

tw
o

rk
p

ac
ke

t

co
n

n
e

ct
()

Sockets

TCP/IP

Network DeviceB
P

F

TCP
retrans

BPF

re
ad

()

File Descriptor

VFS

Block Device

Attachment points
● Kernel functions (kprobes)
● Userspace functions (uprobe)
● System calls
● Tracepoints
● Network devices (packet level)
● Sockets (data level)
● Network device (DMA level) [XDP]
● ...

Process

BPF Maps

14

BPF

BPF Maps

BPF map use cases:
● Hold program state
● Share state between programs
● Share state with user space
● Export metrics & statistics
● Configure programs

Map types:
● Hash tables
● Arrays
● LRU (Least recently used)
● Ring buffer
● Stack trace
● LPM (Longest prefix match)

BPF Helpers

15

bpf_get_prandom_u32()

BPF

BPF helpers:
● Stable kernel API exposed to BPF

programs to interact with the kernel
● Includes ability to:

○ Get process/cgroup context
○ Manipulate network packets

and forwarding
○ Access BPF maps
○ Access socket data
○ Send metrics to user space
○ ...

bpf_skb_store_bytes()

bpf_redirect()

bpf_get_current_pid_tgid()

bpf_perf_event_output()

BPF Tail Calls

16

BPF

BPF

BPF tail calls:
● Chain logical programs together
● Implement function calls
● Must be within same program type

BPF

BPF

BPF

BPF JIT Compiler

17

JIT Compiler
● Ensures native execution

performance without requiring to
understand CPU

● Compiles BPF bytecode to CPU
architecture specific instruction set

Supported architectures:
● X86_64, arm64, ppc64, s390x, mips64,

sparc64, arm

Byte
code

Byte
code

x86_64

generic

Byte
code

generic

JIT

BPF Contributors
 380 Daniel Borkmann (Cilium, Maintainer)

 161 Alexei Starovoitov (Facebook, Maintainer)

 160 Jakub Kicinski Netronome

 110 John Fastabend (Cilium)

 96 Yonghong Song (Facebook)

 95 Martin KaFai Lau (Facebook)

 94 Jesper Dangaard Brouer (Red Hat)

 74 Quentin Monnet (Netronome)

 45 Roman Gushchin (Facebook)

 45 Andrey Ignatov (Facebook)

Top contributors of
the total 186
contributors to BPF
from January 2016 to
November 2018.

18

BPF Use Cases
● L3-L4 Load balancing
● Network security
● Traffic optimization
● Profiling

https://code.fb.com/open-s
ource/linux/

● QoS & Traffic optimization
● Network Security
● Profiling

● Replacing iptables with BPF
(bpfilter)

● NFV & Load balancing (XDP)
● Profiling & Tracing

● Performance
Troubleshooting

● Tracing & Systems Monitoring
● Networking

19

Simple Kprobe Example

20

Example: BPF program using gobpf/bcc:

What is Cilium?

At the foundation of Cilium is the new Linux kernel
technology BPF, which enables the dynamic insertion
of powerful security, visibility, and networking control
logic within Linux itself. Besides providing traditional
network level security, the flexibility of BPF enables
security on API and process level to secure
communication within a container or pod.

Read More

Cilium is open source software for transparently
providing and securing the network and API
connectivity between application services deployed
using Linux container management platforms like
Kubernetes, Docker, and Mesos.

21

Project Goals

22

Approachable BPF
● Make the efficiency and flexibility of BPF

available in an approachable way
● Automate program creation and

management
● Provide an extendable platform

Microservices-aware Linux
● Use the flexibility of BPF to make the Linux

kernel aware of cloud native concepts
such as containers and APIs.

Security
● Use the additional visibility of BPF to

provide security for microservices
including:
○ API awareness
○ Identity based enforcement
○ Process level context enforcement

Performance
● Leverage the execution performance and

JIT compiler to provide a highly efficient
implementation.

Cilium Use Cases

23

Container Networking
● Highly efficient and flexible

networking
● CNI and CMM plugins
● IPv4, IPv6, NAT46, direct routing,

encapsulation
● Multi cluster routing

Service Load balancing:
● Highly scalable L3-L4 load balancing

implementation
● Kubernetes service implementation or

API driven.

Microservices Security
● Identity-based L3-L4 network security
● Accelerated API-aware security via

Envoy (HTTP, gRPC, Kafka, Cassandra,
memcached, ..)

● DNS aware policies
● SSL data visibility via kTLS

Servicemesh acceleration:
● Minimize overhead when injecting

servicemesh sidecar proxies

BPF-based servicemesh
Acceleration

24

Service

Container

Sidecar proxy

Service

Container

Sidecar proxy

How it really looks:

BPF-based servicemesh
Acceleration

25

Accelerate the service to
sidecar communication

~3.5x performance improvement

Other BPF projects

26

Tracing / Profiling:
● BPFTrace - DTrace for Linux (Brendan

Gregg, et al.)
● bpfd - Load BPF programs into entire

clusters (Joel Fernandes, Google)

Frameworks:
● gobpf - Go based framework to write BPF

programs
● BCC - Python framework to write BPF

programs

Load balancing:
● Katran - Source code of Facebook’s

primary L3-L4 LB (Facebook team)

Security:
● Seccomp - Advanced BPF version of

Seccomp (Kernel team)

DDoS mitigation:
● bpftools - DDOS mitigation tool with

iptables like syntax (Cloudflare)

… and many more

Thank you!

Source Code:
https://github.com/cilium/cilium
BPF reference guide:
http://docs.cilium.io/en/stable/bpf/

Twitter:
@ciliumproject
Website:
https://cilium.io/

