Deep Representation: Building a Semantic Image Search Engine

Emmanuel Ameisen

INSIGHT

PINTEREST SEARCH

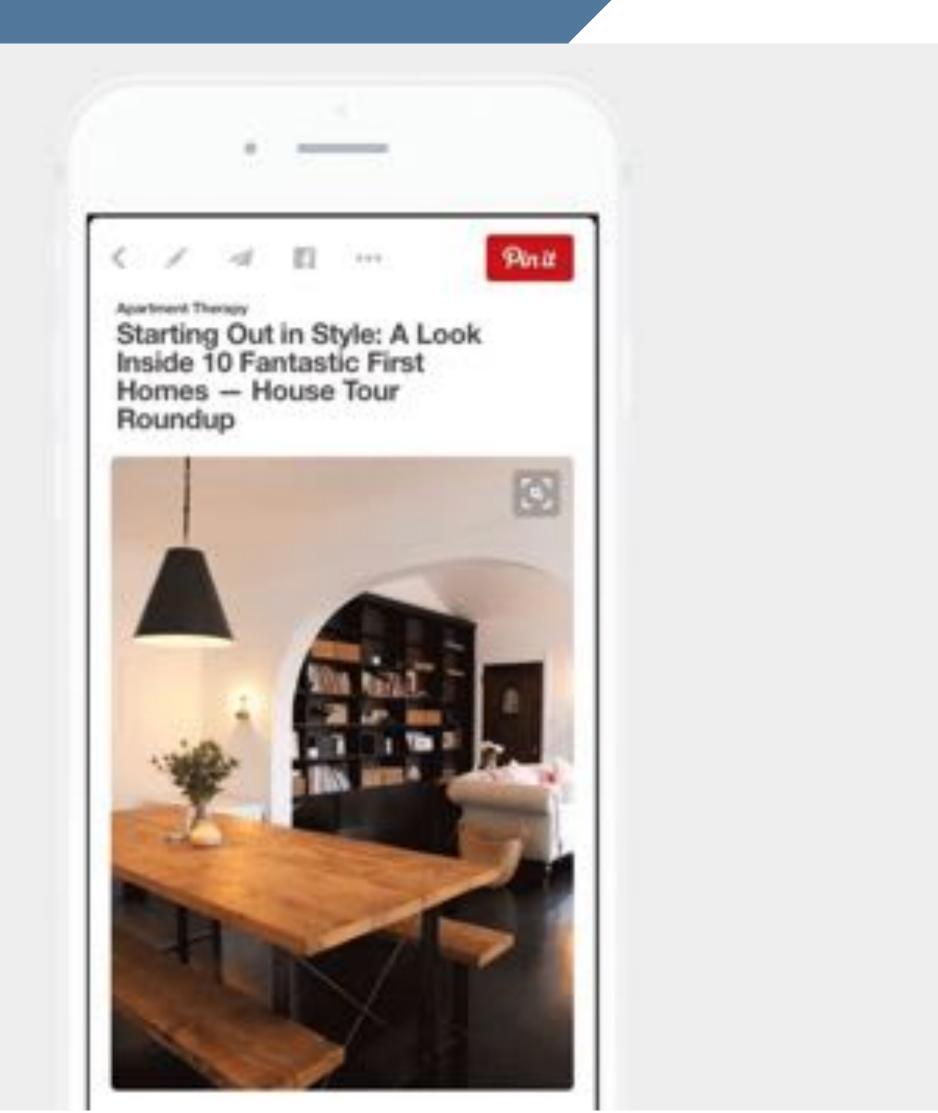


IMAGE SEARCH ENGINE

cat sitting on a couch

Web Images Videos News Products

All Regions * Safe Search: Moderate * All Sizes * All Types * All Layouts * All Colors *

IMAGE TAGGING

<u>thenextweb.com</u>

BACKGROUND

ABOUT INSIGHT

7-Week Fellowship in

DATA SCIENCE

DATA ENGINEERING

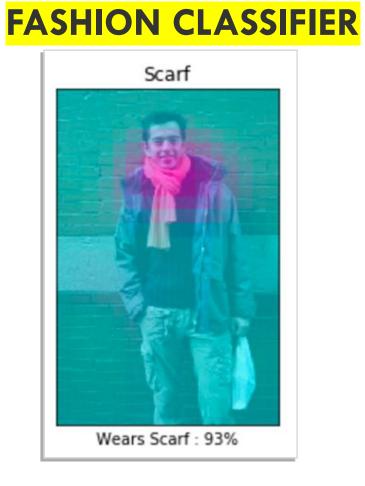
ARTIFICIAL INTELLIGENCE

PRODUCT MANAGEMENT

+ REMOTE

www.insightdata.ai

INSIGHT DATA – FELLOW PROJECTS



AUTOMATIC REVIEW GENERATION

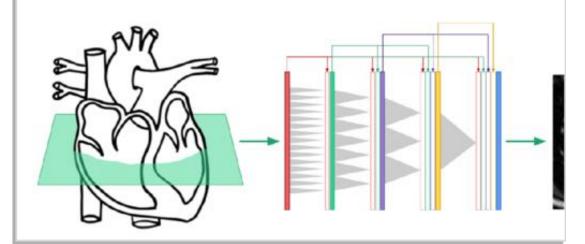
2 2 2 2 2 9/24/2017

Great service! The place is very relaxed. The curry is outstanding. I am always satisfied with the food and the ambiance.

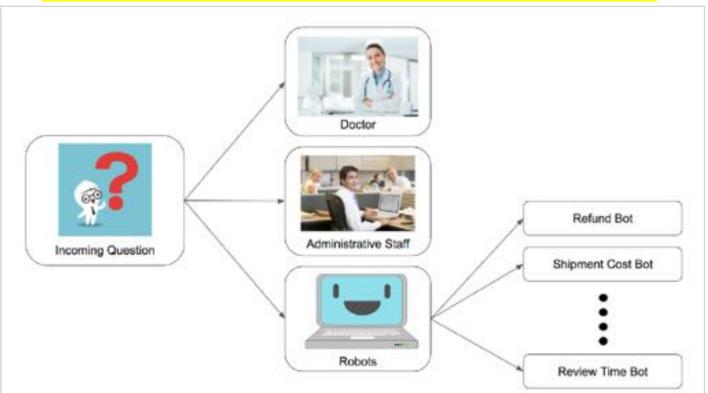
HEART SEGMENTATION

Heart Disease Diagnosis with **Deep Learning**

State-of-the-art results with 60x fewer parameters



SUPPORT REQUEST CLASSIFICATION

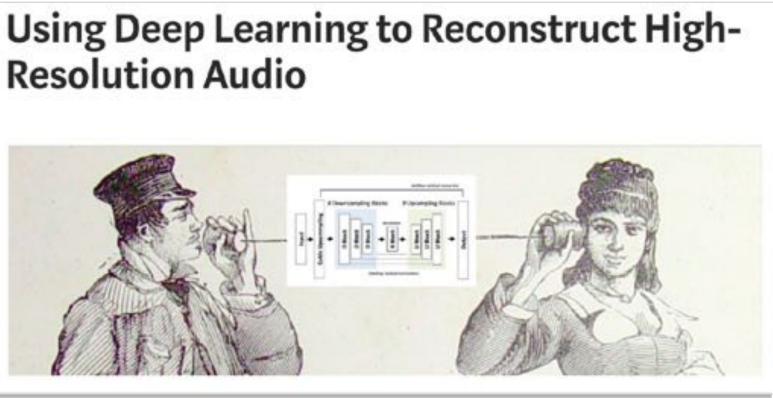


£1.

READING TEXT IN VIDEOS

SPEECH UNSAMPLING

Resolution Audio



INSIGHT ALUMNI

1

INSIGHT FELLOWS ARE DATA SCIENTISTS AND DATA ENGINEERS EVERYWHERE

ON THE MENU

- A quick overview of Computer Vision (CV) tasks and challenges
- Natural Language Processing (NLP) tasks and challenges
- Challenges in combining both
- Representations learning in CV
- **Representation learning in NLP**
- Combining both

ON THE MENU

- A quick overview of Computer Vision (CV) tasks and challenges
- Natural Language Processing (NLP) tasks and challenges
- Challenges in combining both
- Representations learning in CV
- **Representation learning in NLP**
- Combining both

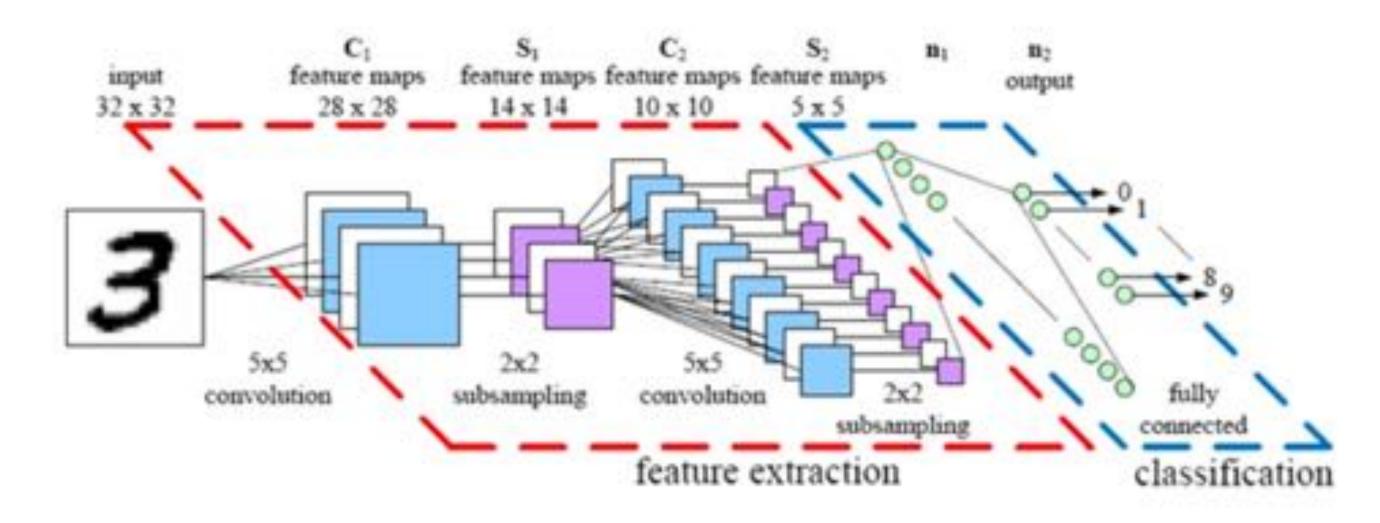
CONVOLUTIONAL NEURAL NETWORKS (CNN)

- Massive models
 - Dataset of 1M+images \triangleright
 - For multiple days \triangleright
- Automates feature engineering
- Use cases

 \triangleright

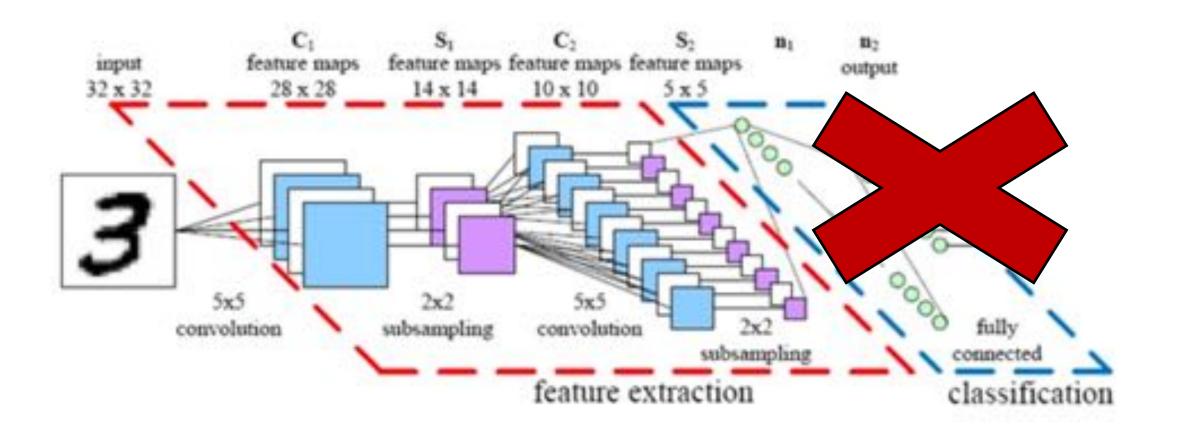
- Fashion \triangleright
- Security \triangleright
- Medicine \triangleright

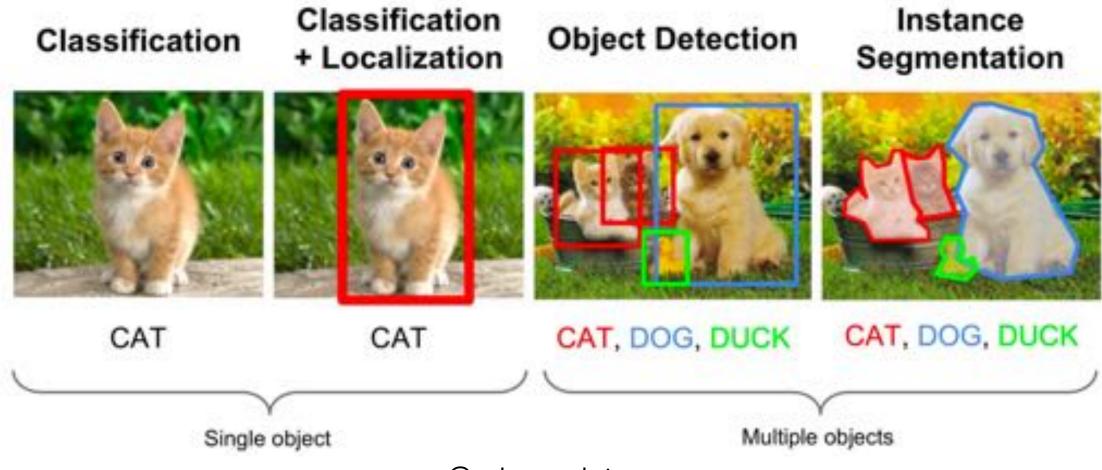
. . .



EXTRACTING INFORMATION

- Incorporates local and global information
- Use cases
 - ► Medical
 - ► Security
 - Autonomous Vehicles





@arthur_ouaknine

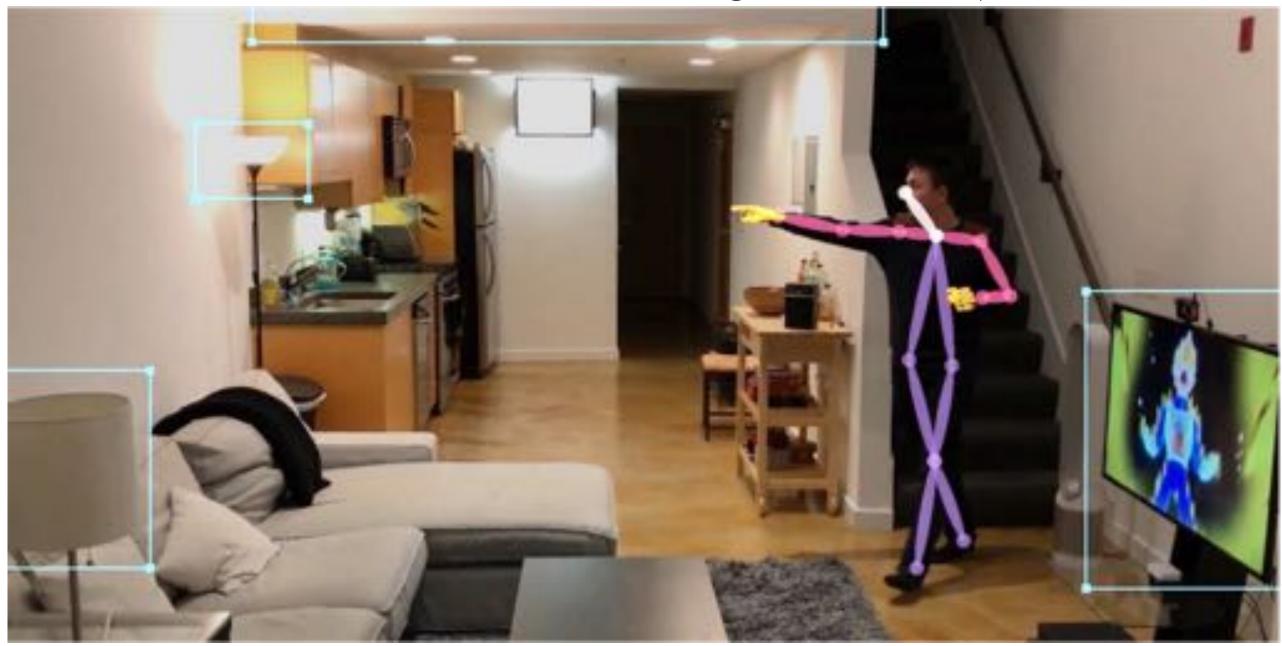
Π.

ł

ADVANCED APPLICATIONS

- Pose Estimation
- Scene Parsing
- 3D Point cloud estimation

Insight Fellow Project with Piccolo



Felipe Mejia

ON THE MENU

- A quick overview of Computer Vision (CV) tasks and challenges
- Natural Language Processing (NLP) tasks and challenges
- Challenges in combining both
- Representations learning in CV
- **Representation learning in NLP**
- Combining both

NLP

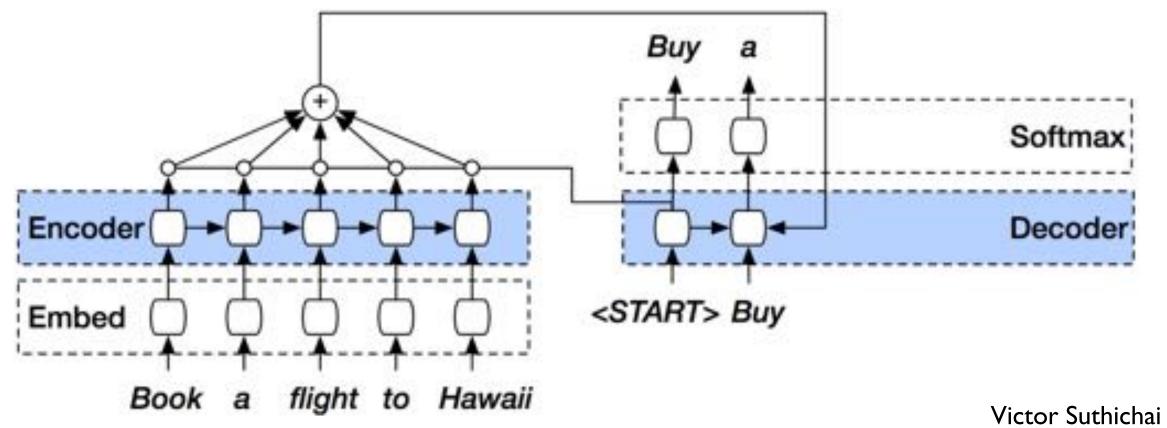
- Traditional NLP tasks
 - Classification (sentiment analysis, spam detection, code classification)
- Extracting Information
 - Named Entity Recognition, Information extraction
- Advanced applications
 - Translation, sequence to sequence learning

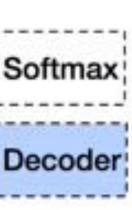
SENTENCE PARAPHRASING

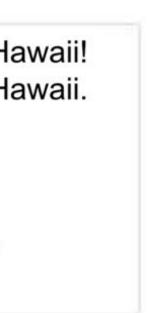
- Sequence to sequence models are still often too rough to be deployed, even with sizable datasets
 - Recognized Tosh as a swear word \triangleright
- They can be used efficiently for data augmentation
 - Paired with other latent approaches \triangleright

Pair a phrase

Enter sentence / phrase New phrase I want to get a plane ticket to Hawaii! I want to book a flight to Hawaii! I want to schedule a plane to Hawaii. I want to *fly* to Hawaii. I want to travel to Hawaii! I want to go to Hawaii! i want to get a flight to hawaii .







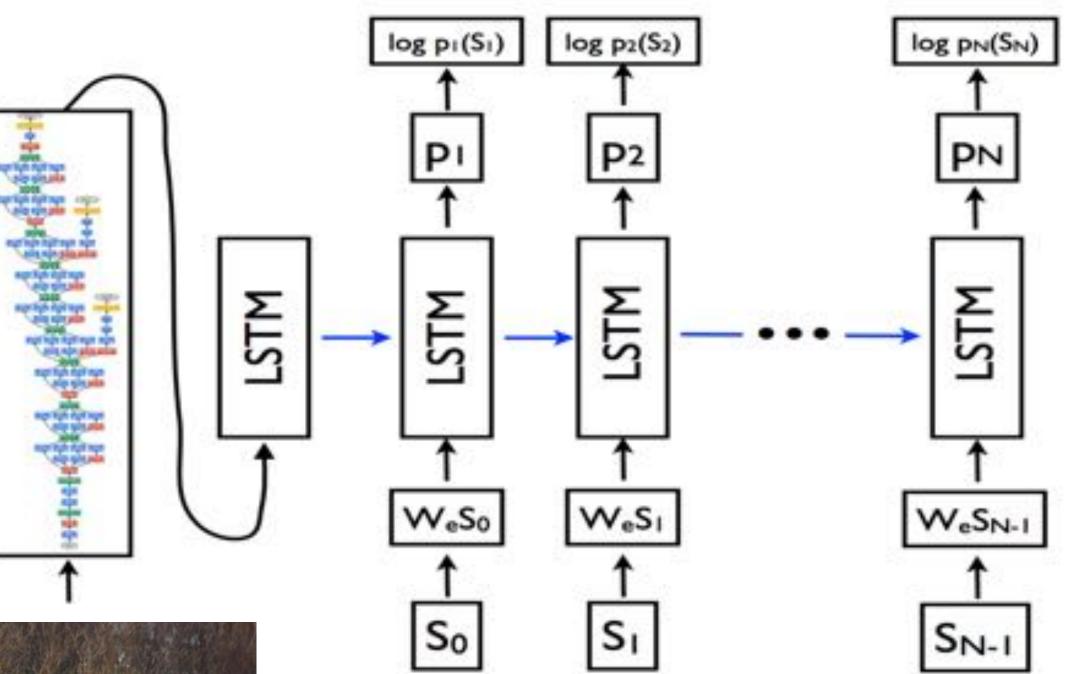
ON THE MENU

- A quick overview of Computer Vision (CV) tasks and challenges
- Natural Language Processing (NLP) tasks and challenges
- Challenges in combining both
- Representations learning in CV
- **Representation learning in NLP**
- Combining both

IMAGE CAPTIONING

- Prime language model with features extracted from CNN
- Feed to an NLP language model
- End-to-end
 - Elegant \triangleright
 - Hard to debug and validate \triangleright
 - Hard to productionize \triangleright

A horse is standing in a field with a fence in the background.

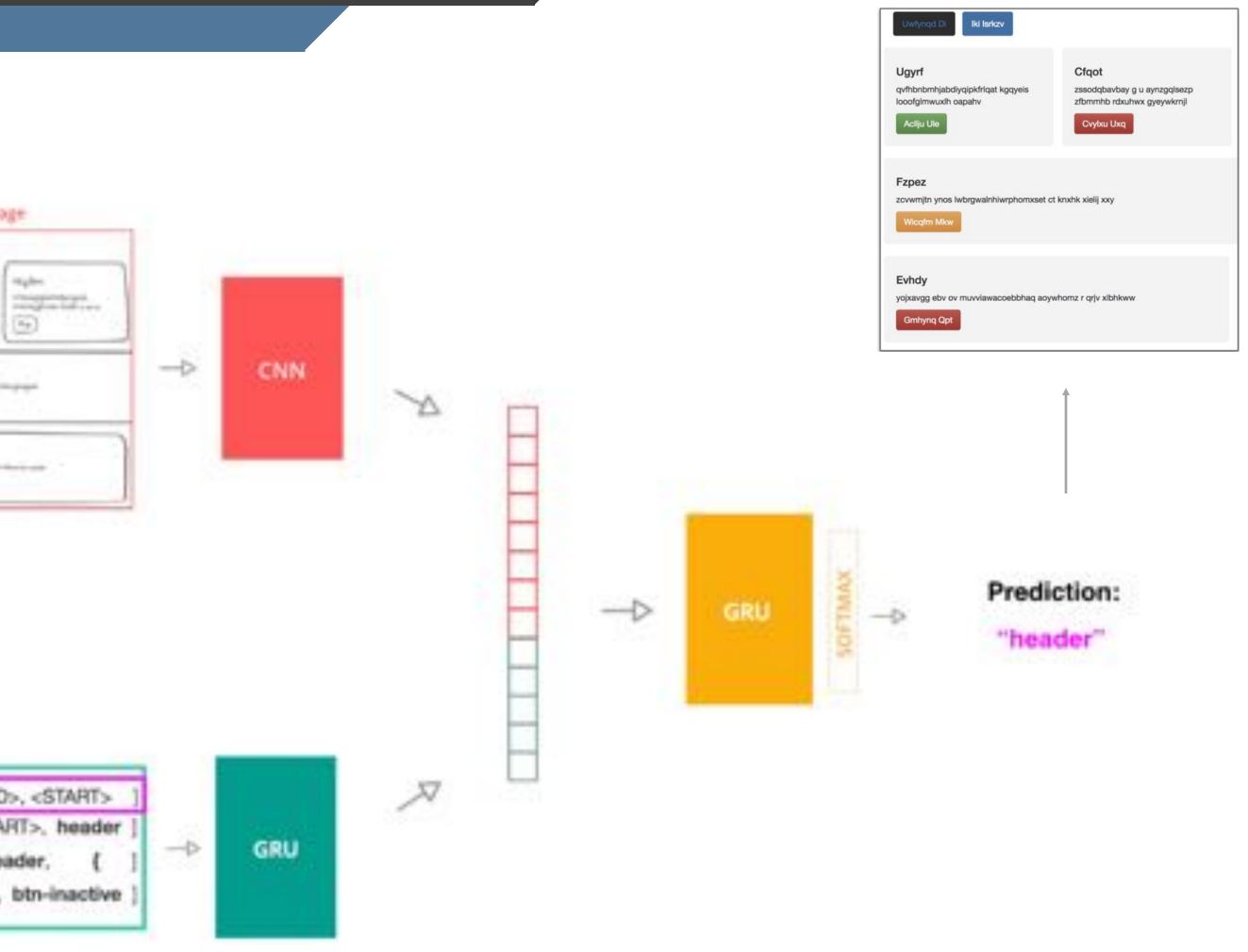


CODE GENERATION

- Harder problem for humans
 - Anyone can describe an image
 - Coding takes specific training
- We can solve it using a similar model
- The trick is in getting the data!

1	14.5x [14.4]	Im
1	97 (1)	-
		- 14-2

(«PAD», «PAD», «PAD
<pre><pad>, <pad>, <sta< pre=""></sta<></pad></pad></pre>
(<pad>, <start>, he</start></pad>
<pre><start>, header, { ,</start></pre>



BUT DOES IT SCALE?

- These methods mix and match different architectures
- The combined representation is often learned implicitly
 - Hard to cache and optimize to re-use across services \triangleright
 - Hard to validate and do QA on \triangleright
- The models are entangled
 - What if we want to learn a simple joint representation? \triangleright

Image Search

Goals

- Searching for similar images to an input image
 - Computer Vision: (Image \rightarrow Image)
- Searching for images using text & generating tags for images
 - Computer Vision + Natural Language Processing: (Image \leftrightarrow Text) -
- Bonus: finding similar words to an input word
 - Natural Language Processing: (Text \rightarrow Text)

ON THE MENU

- A quick overview of Computer Vision (CV) tasks and challenges
- Natural Language Processing (NLP) tasks and challenges
- Challenges in combining both
- Representations learning in CV
- **Representation learning in NLP**
- Combining both

Image Based Search

Let's build this!

Snapchat lets you take a photo of an object to buy it on Amazon

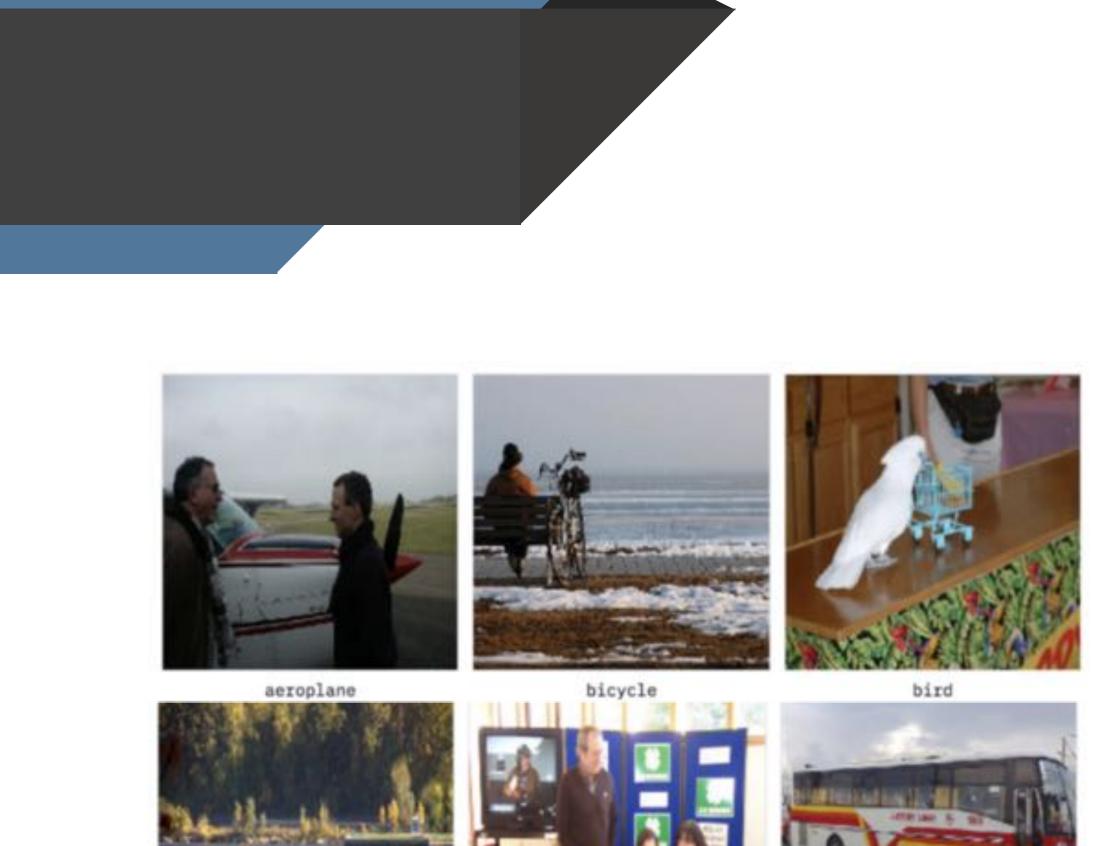
Josh Constine @joshconstine / 4 weeks ago

Q Searching Q Search 32 amazon Under Armour Men's HOVR Soni. y Umhai Armituz \$100.00 - prime See all results at Amapon

Comment

Dataset

- 1000 images
 - 20 classes, 50 images per class
- 3 orders of magnitude smaller than usual deep learning datasets
- Noisy



aeroplane bicycle bird boat bottle bus car cat chair cow dining_table dog horse motorbike person potted_plant sheep sofa train tv_monitor

bottle

boat

Credit to Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier for the dataset.

bus

WHICH CLASS?

aeroplane bicycle bird boat bottle bus car cat chair cow dining_table dog horse motorbike person potted_plant sheep sofa train tv_monitor

DATA PROBLEMS

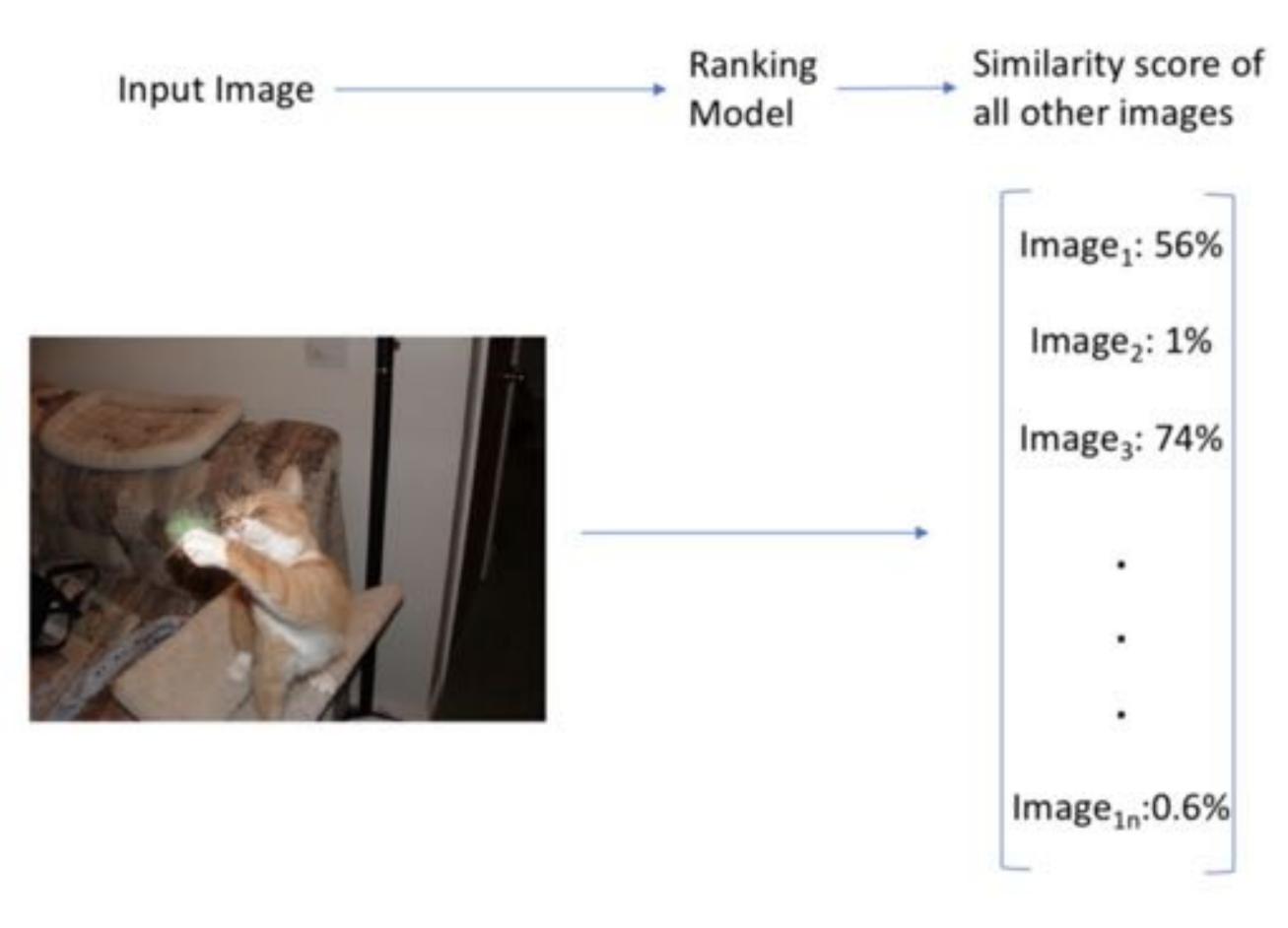
Bottle ③

A FEW APPROACHES

Ways to think about searching for similar images

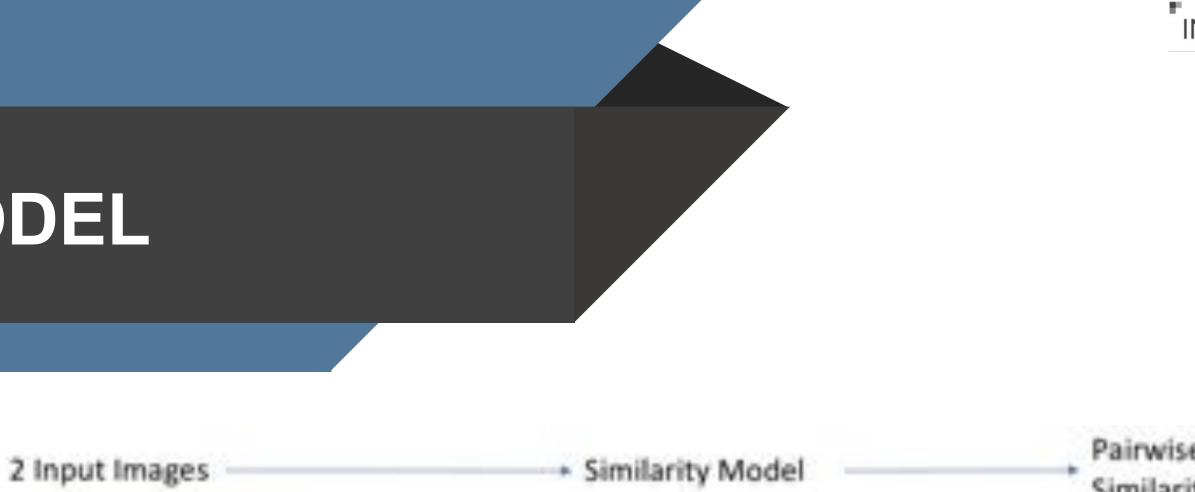
IF WE HAD INFINITE DATA

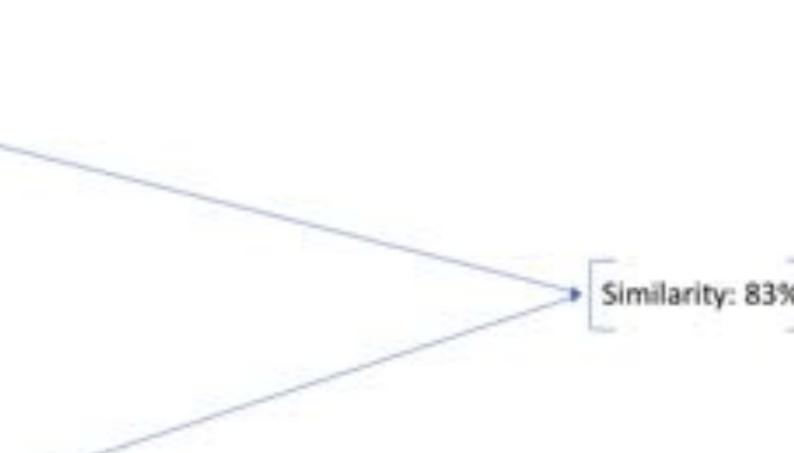
- Train on all images
- Pros:
 - One Forward Pass (fast inference)
- Cons:
 - Hard too optimize
 - Poor scaling
 - Frequent Retraining



SIMILARITY MODEL

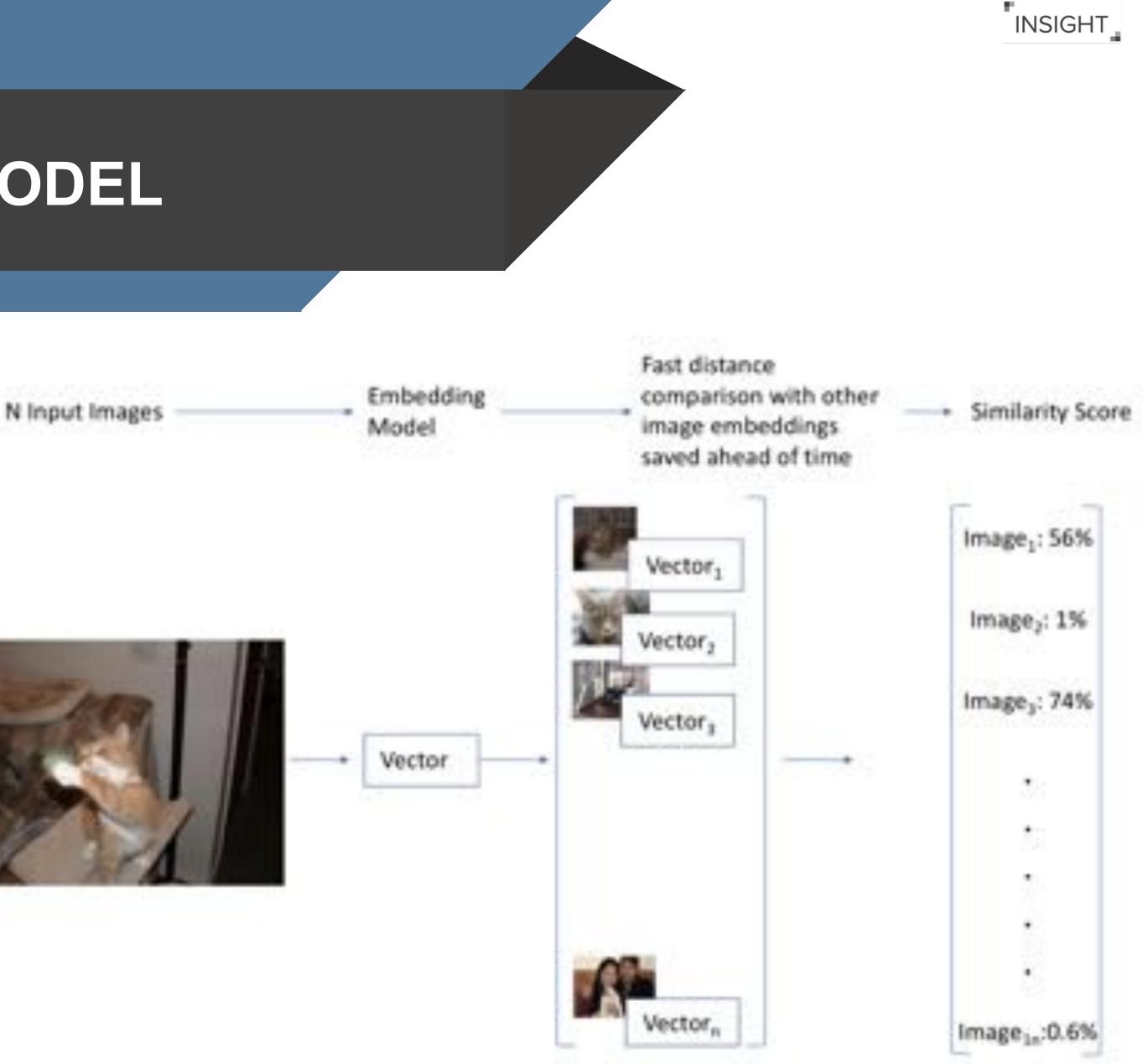
- Train on each image pair
- Pros:
 - Scales to large datasets
- Cons:
 - Slow
 - Does not work for text
 - Needs good examples

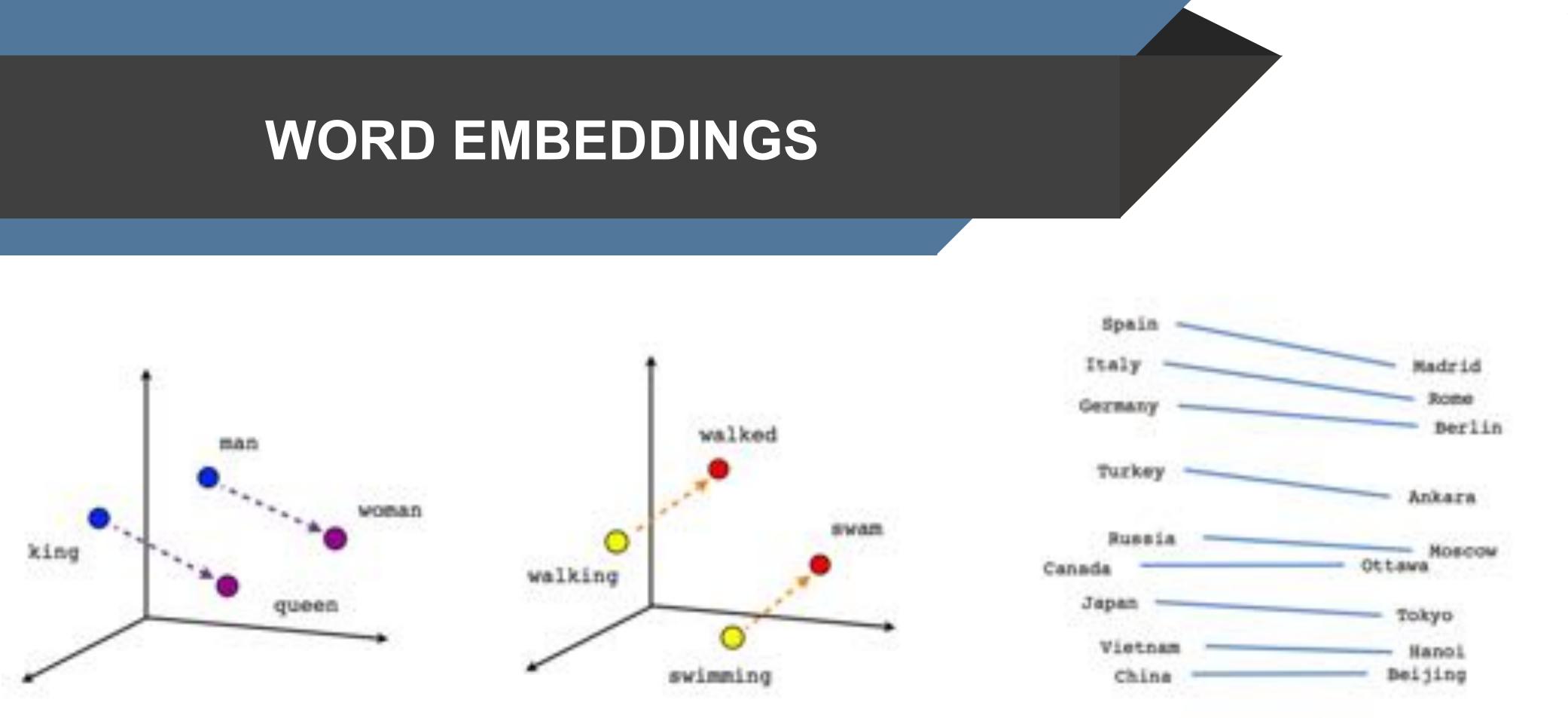


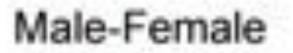


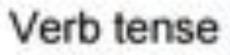
EMBEDDING MODEL

- Find embedding for each image
- Calculate ahead of time
- Pros:
 - Scalable
 - Fast
- Cons:
 - Simple representations



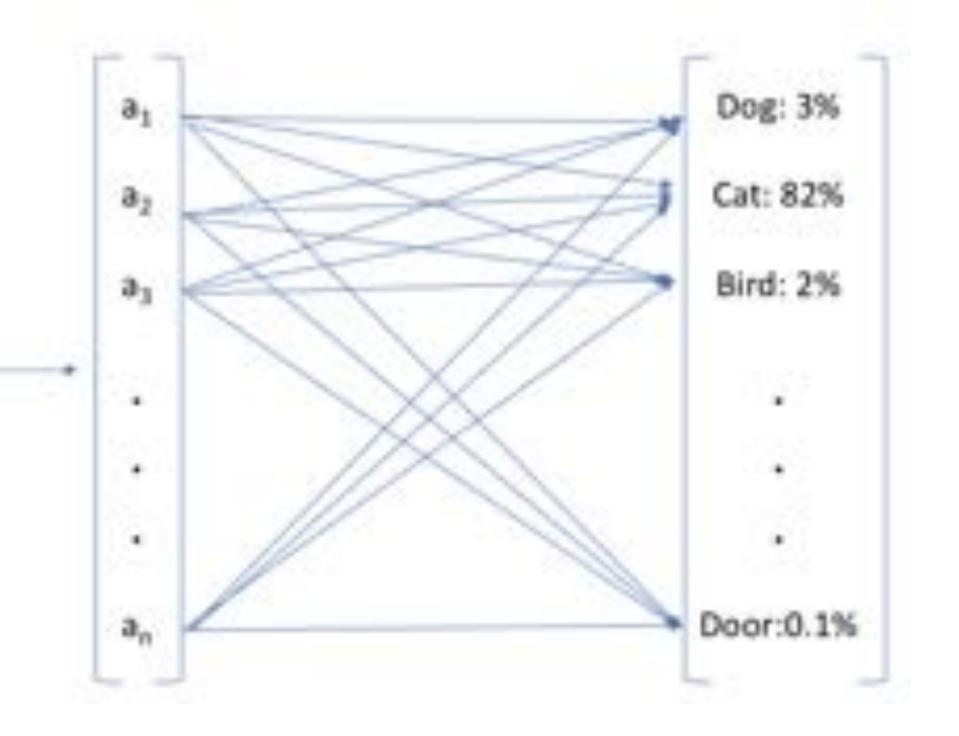






Country-Capital

LEVERAGING A PRE-TRAINED MODEL



HOW AN EMBEDDING LOOKS

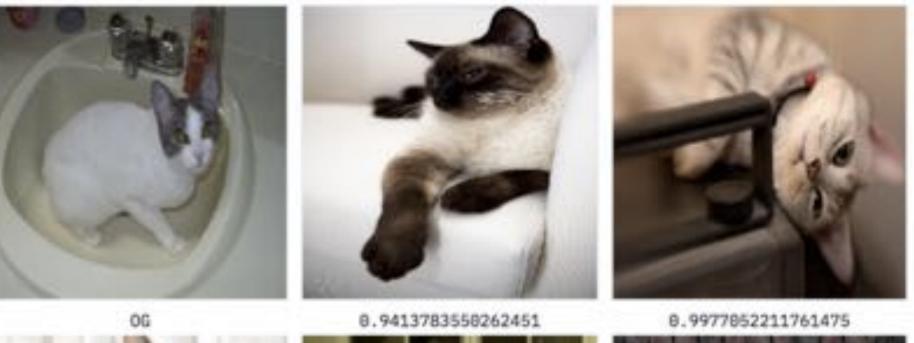
	:4	4885	4886	4987	4888	4689	4890	4091	4892	4893	4894	4895
0	0	0.4546	0	6.1516	0	1.3763	0	0	1.1756	0.4681	0	.0
1	0	Θ	Θ	0	Θ	0	0	0	Θ	Θ	Θ	0
2	θ	9	0	1.8355	0	Θ	0	9	8.6923	0	0	0
3	15	Θ	0	Θ	0.4428	5.2478	Θ	9	1.6778	Θ	Θ	0
A	-6	8.1924	0	0	8	8	0	8	0.8986	0	8	0
5	19	0	0	2.0729	0	0	0	0	0.0996	0.2377	0	0
6	0	0	0	6.8556	0	1.3900	0	0	0.6859	1.1272	Θ	0
7	0	0	0	2.2498	0	0	0	1.8188	0.1840	0	0	0
8	0	θ	0	6.0193	0	0	0	0	0	0	0	0
9	-5	Θ	0	0	0.9562	0	0.3197	0	1.8738	3.5308	8	1.3911
10	6	0	0	0.2099	0	0	0	1.4480	1.3150	1.1056	2.1684	2

PROXIMITY SEARCH IS FAST

- How do you find the 5 most similar images to a given one when you. have over a million users?
- Fast index search
 - Spotify uses annoy (we will as well)
 - Flickr uses LOPQ
 - Model Not also very fast
- Some rely on making the queries approximate in order to make them fast

PRETTY IMPRESSIVE!

OUT



1.0260729789733887

1.032860517501831

1.0021318044642

FOCUSING OUR SEARCH

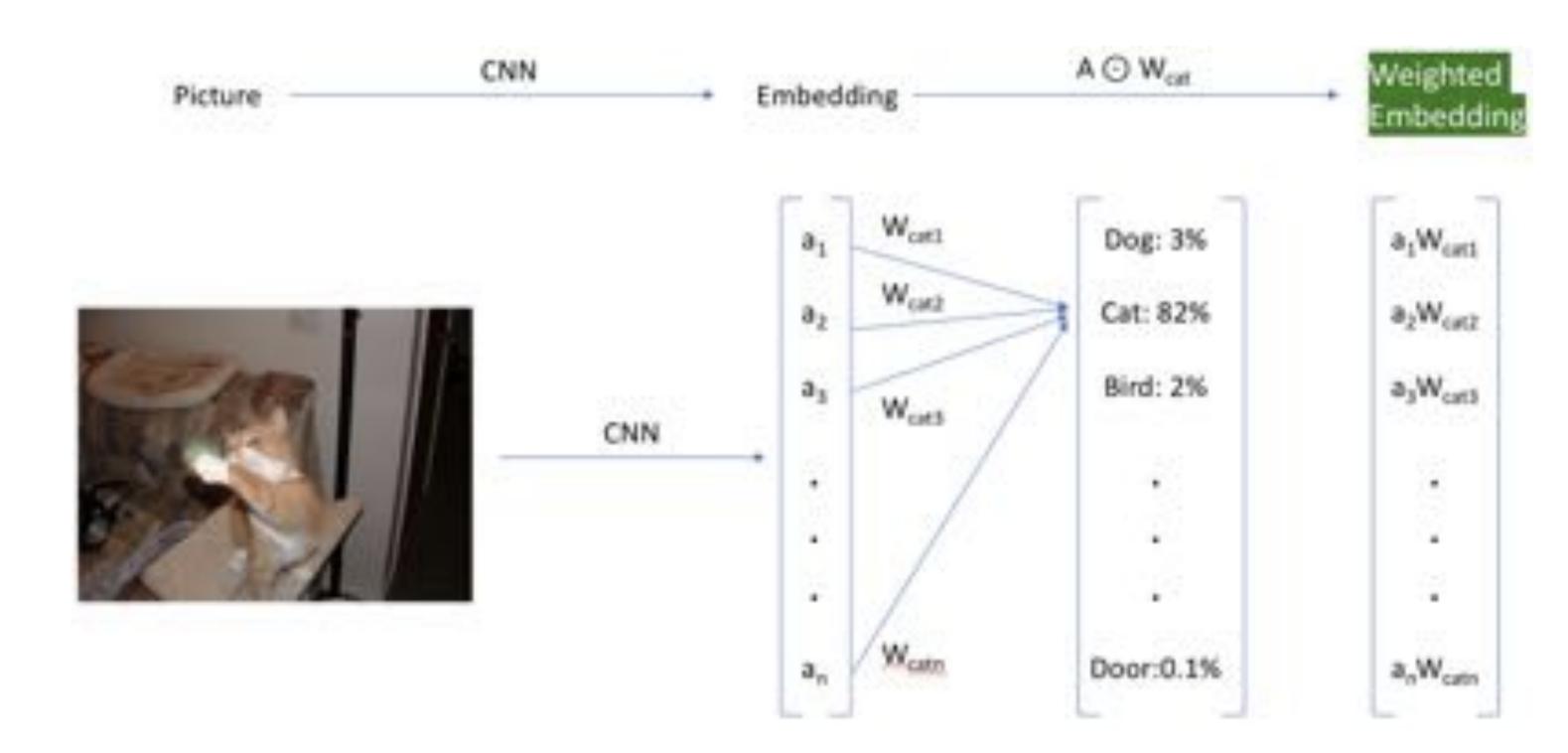
- Sometimes we are only interested in part of the image.
- How do we incorporate this information

• For example, given an image of a cat and a bottle, we might be only interested in similar cats, not similar bottles.

IMPROVING RESULTS: STILL NO TRAINING

Computationally expensive approach:

- Object detection model first
 - (We don't do this)
- Image search on a cropped image
 - (We don't do this) ----
- **Semi-Supervised** approach:
 - Hacky, but efficient!
 - re-weighing the activations
 - Only use the class of interest to reweigh embeddings



EVEN BETTER

OUT

0G

0.8694091439247131

1.007677435874939

0.968299158466919

1.0096632242202759

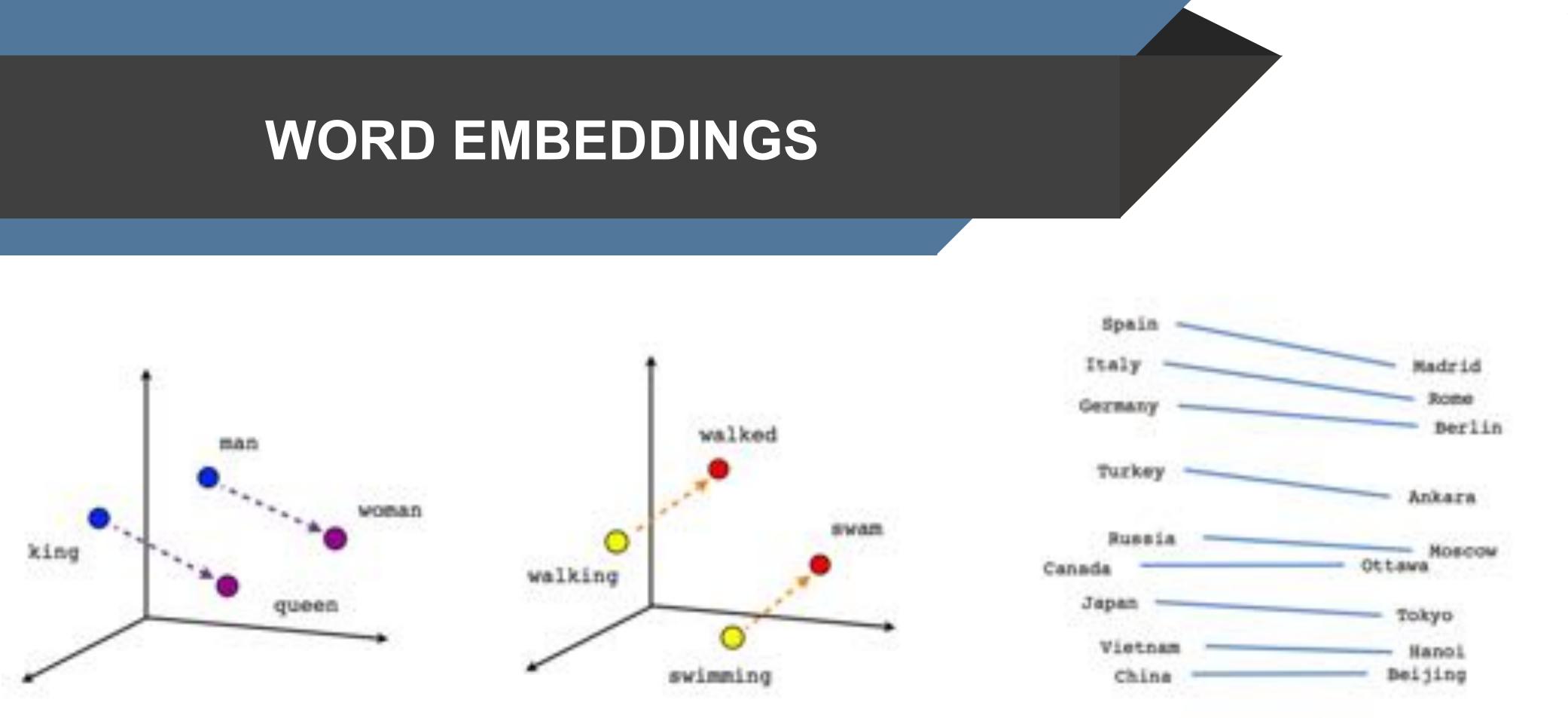
1.013108730316162

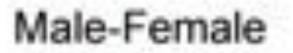
ON THE MENU

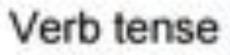
- A quick overview of Computer Vision (CV) tasks and challenges
- Natural Language Processing (NLP) tasks and challenges
- Challenges in combining both
- Representations learning in CV
- **Representation learning in NLP**
- Combining both

GENERALIZING

- We would like to be able to use any word
- How do we combine words and images?







Country-Capital

SEMANTIC TEXT!

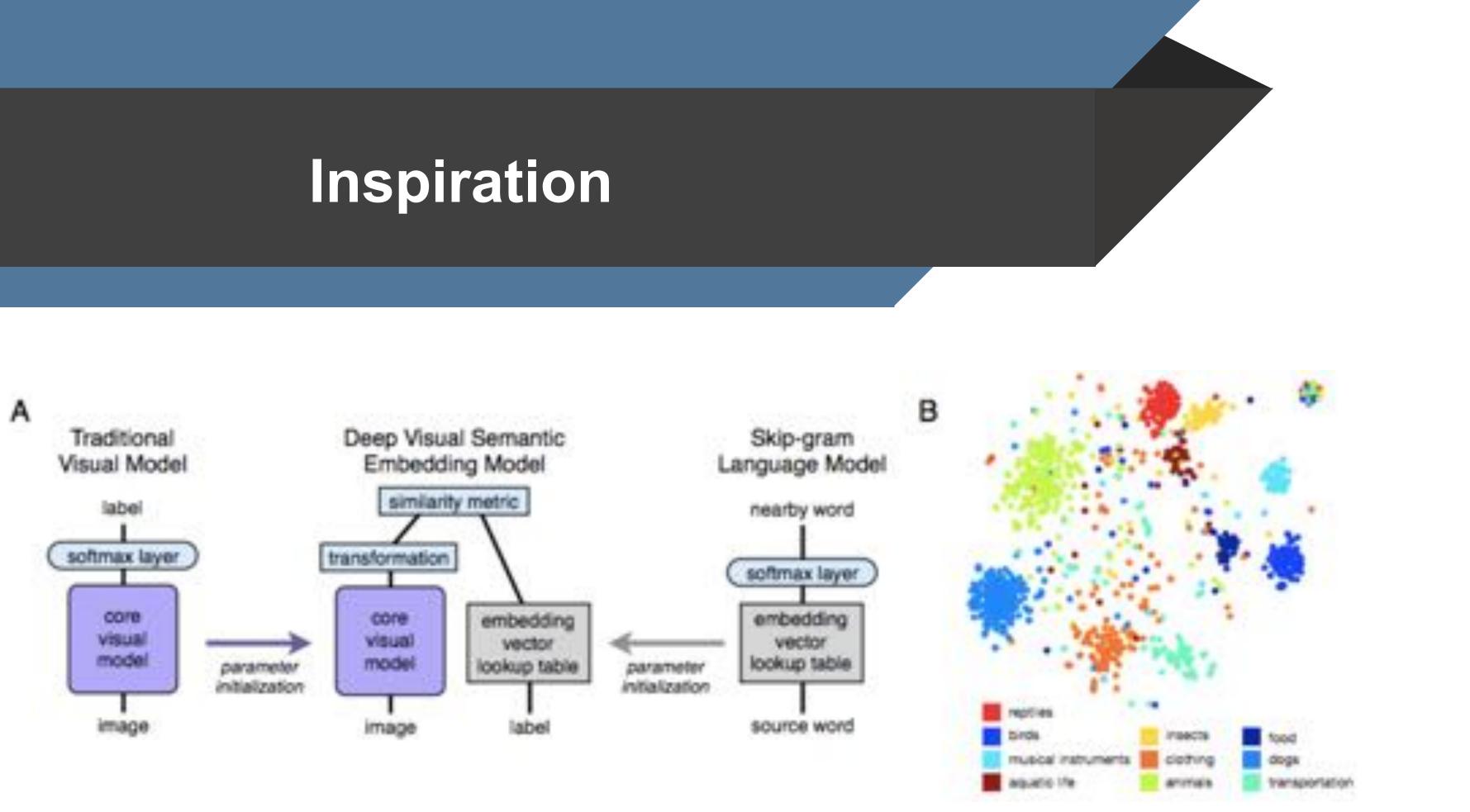
Load a set of pre-trained vectors (GloVe)

- Wikipedia data
- Semantic relationships
- One big issue:
 - The embeddings for images are of size 4096
 - While those for words are of size 300
 - And both models trained in a different fashion
- What we need: Joint model!

- ['said', 0.0]
- ['told', 0.688713550567627]
- ['spokesman', 0.7859575152397156]
- ['asked', 0.872875452041626]
- ['noting', 0.9151610732078552]
- ['warned', 0.915908694267273]
- ['referring', 0.9276227951049805]
- ['reporters', 0.9325974583625793]
- ['stressed', 0.9445104002952576]
- ['tuesday', 0.9446316957473755]

ON THE MENU

- A quick overview of Computer Vision (CV) tasks and challenges
- Natural Language Processing (NLP) tasks and challenges
- Challenges in combining both
- Representations learning in CV
- **Representation learning in NLP**
- Combining both



DeViSE: A Deep Visual-Semantic Embedding Model

Andrea Frome*, Greg S. Corrado*, Jonathon Shlens*, Samy Bengio Jeffrey Dean, Marc'Aurelio Ranzato, Tomas Mikolov * These authors contributed equally.

{afrome, gcorrado, shlens, bengio, jeff, ranzato; tmikolov}@google.com Google, Inc. Mountain View, CA, USA

TIME TO TRAIN

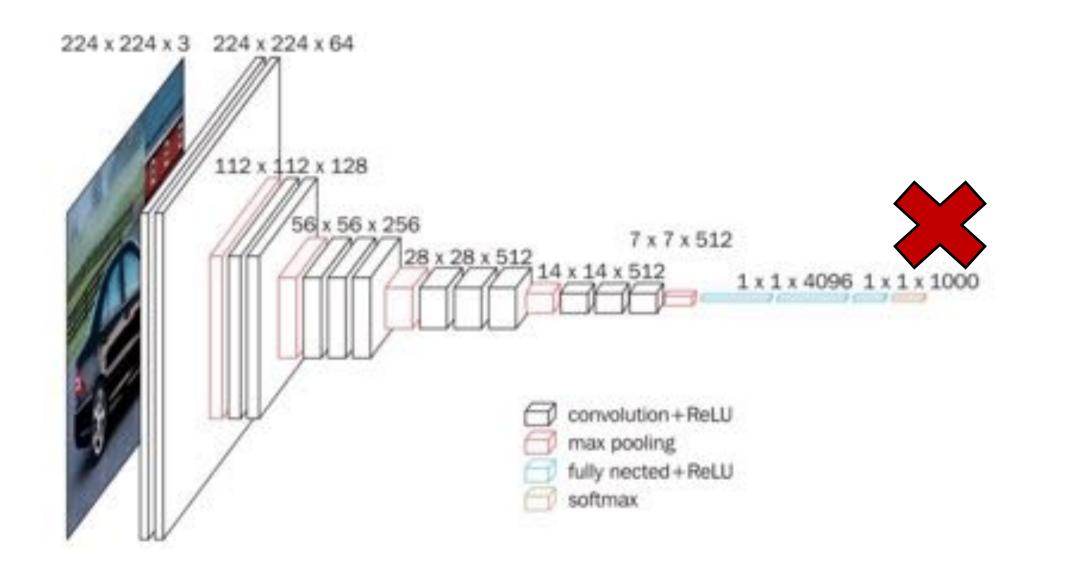
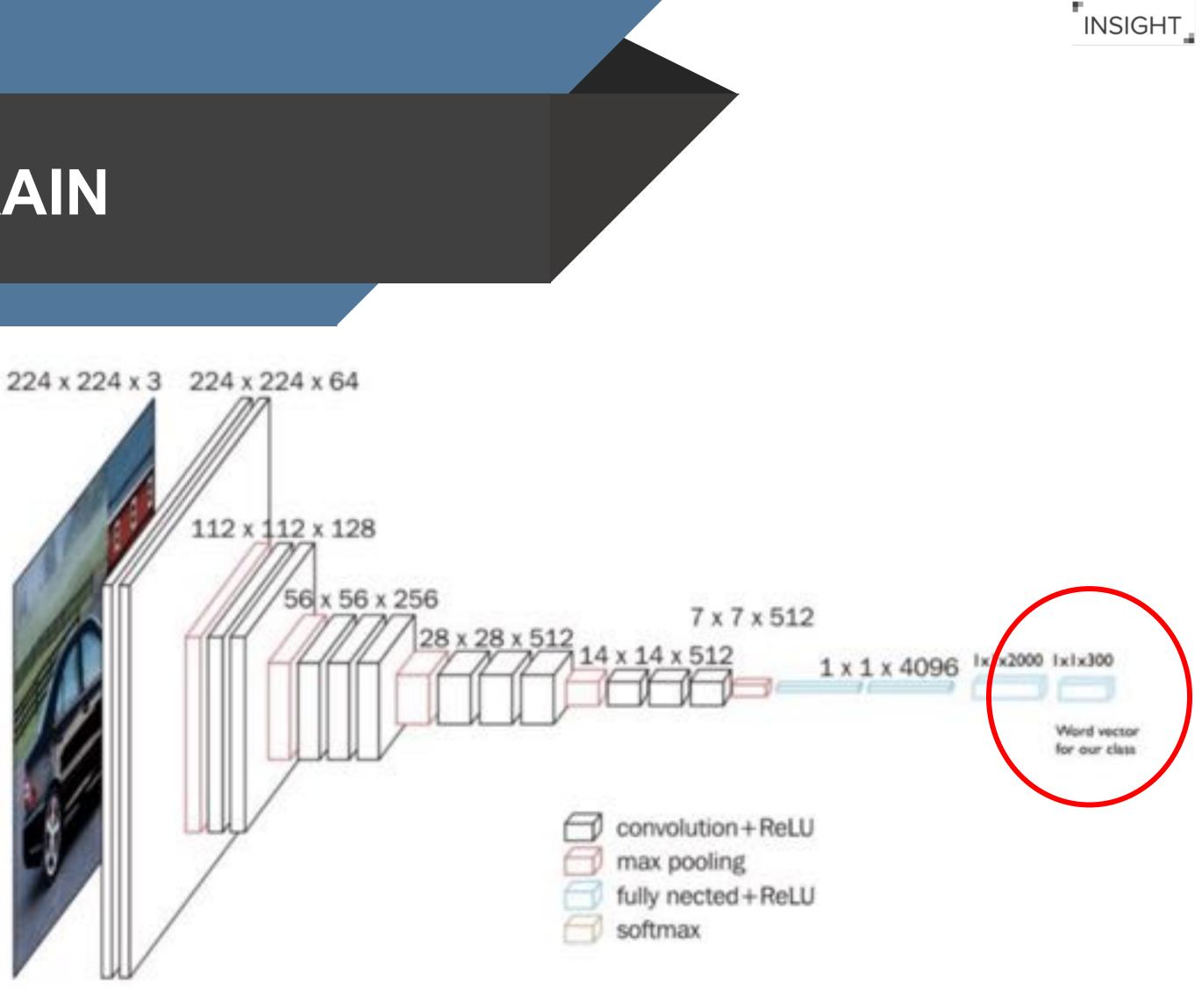


Image \rightarrow Image



$IMAGE \rightarrow TEXT$

Re-train model to predict the word vector

- i.e. 300-length vector associated with cat

Training

- Takes more time per example than image \rightarrow class
- But *much* faster than on Imagenet (7 hours, no GPU)

Important to note

- Training data can be very small: ~1000 images
- Miniscule compared to Imagenet (1+ Million images)
- Once model is trained
 - Build a new fast index of images
 - Save to disk

How do you think this model will perform?

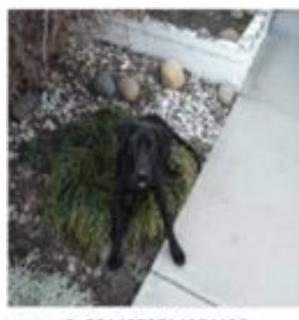
$\mathsf{IMAGE} \to \mathsf{TEXT}$

Here are the generated tags:

- [6676, 'bottle', 0.3879561722278595]
- [7494, 'bottles', 0.7513495683670044]
- [12780, 'cans', 0.9817070364952087]
- [16883, 'vodka', 0.9828150272369385]
- [16720, 'jar', 1.0084964036941528]
- [12714, 'soda', 1.0182772874832153]
- [23279, 'jars', 1.0454961061477661]
- [3754, 'plastic', 1.0530102252960205]
- [19045, 'whiskey', 1.061428427696228]
- [4769, 'bag', 1.0815287828445435]

GENERALIZED IMAGE SEARCH WITH MINIMAL DATA

IN: "DOG"



0.3864878714084625

0.3922061026096344

0.4144909679889679

0.4158168137073517

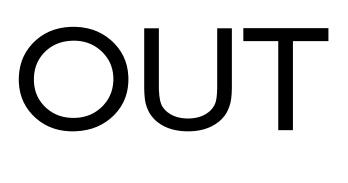
0.4334823892879486

0.4299579858779987

0.43694719672203064

0.43139806389808655

0.43998498781284224



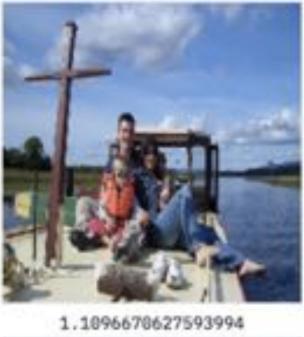
SEARCH FOR WORD NOT IN DATASET

IN: "OCEAN"

£1.

1.0978461503982544

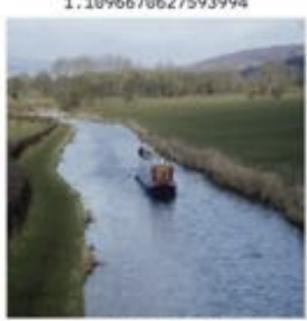
1.107574462890625



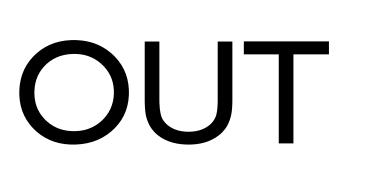
1.1217926748646362

1.1270556449898137

1.1251723766326984



1.1262227296829224



SEARCH FOR WORD NOT IN DATASET

IN: "STREET"

1.1869385242462158

1.2010694742202759

1.2037224769592285

OUT

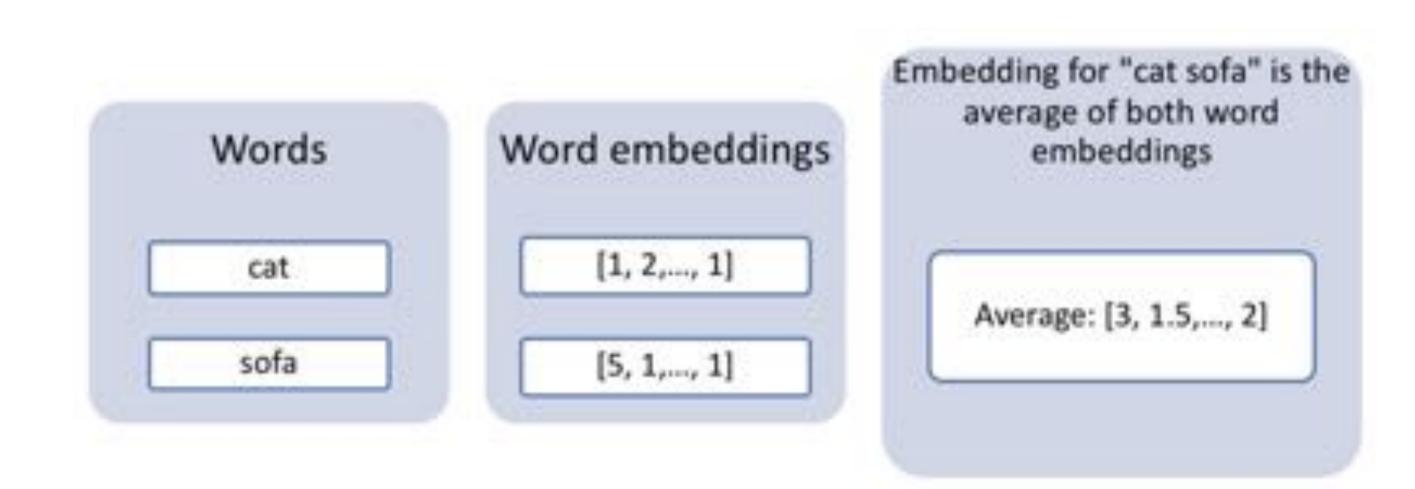
1.2077884674072266

1.211493730545044

1.285135464668274

1.2118890285491943

MULTIPLE WORDS!



MULTIPLE WORDS!

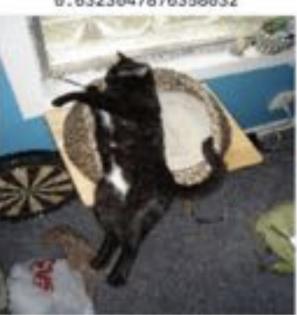
IN: "CAT SOFA" OUT

0.584483802318573

0.6323047876358032

0.6314529180526733

0.7039458751678467



0.7254294157028198

0.7283080816268921

0.7311896085739136

0.6164626479148865

0.6585681438446845

Learn More: Find the repo on Github!

hundredblocks / semantic-search 10 Pro Code Pull requests 0 (1) issues (0) Semantic search for images and words using neural net 3 commits P1 branch New pull request Branch: master + hundredblocks Added notebook and updated formatting of REA assets First commit is vector_search First commit README.md Added notebook and up init_py First commit dema.py First commit downloader.py First commit requirements.txt First commit requirements_all.txt First commit Search.py First commit Train.py First commit Utils.py First commit

					-			1100	
			Wate	n •	5	* Unstar	60	¥ Fork	21
rojects Ø	Wiki	di Insight	hts						
tworks.									
h		O releases				AL 1 contributor			
		Create ne	w file L	Ipload	files	Find file	Clon	e or downlo	ed -
ADME.md						Latest c	ommit s	Le4c59e on .	Jul 5
								3 months	ago
								3 months	ago
pdated formatti	ng of RE/	DME.md						3 months	ago
								3 months	ago
								3 months	ago
								3 months	ago
								3 months	ago
								3 months	ago
								3 months	ago
								3 months	ago
								3 months	ago

Next steps

Incorporating user feedback

- Most real world image search systems use user clicks as a signal

Capturing domain specific aspects

- Often times, users have different meanings for similarity
- Keep the conversation going
 - Reach me on Twitter @EmmanuelAmeisen

bit.ly/imagefromscratch

EMMANUEL AMEISEN Head of Al, ML Engineer

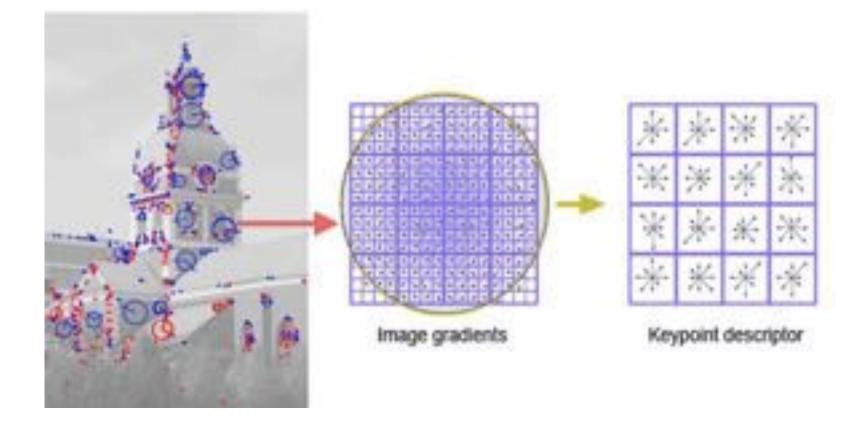
emmanuel@insightdata.ai

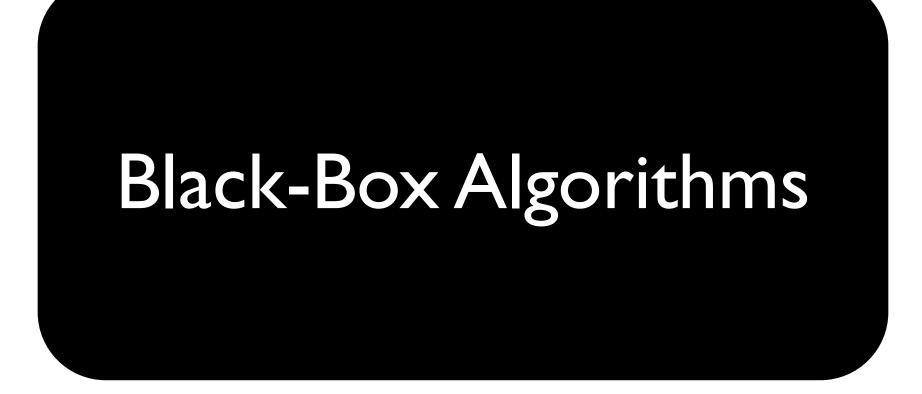
@emmanuelameisen

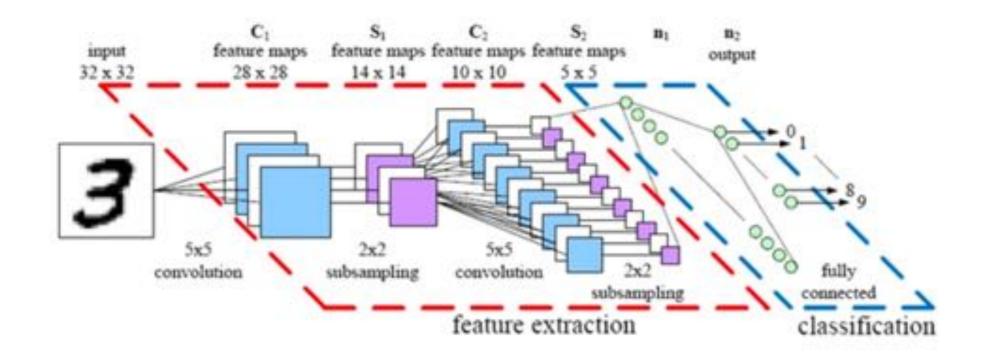
www.insightdata.ai/apply

CV Approaches

White-box Algorithms







CLASSIFICATION

- NLP Classification is generally more shallow
 - Logistic Regression/Naïve Bayes \triangleright
 - Two layer CNN \triangleright
- This is starting to change
 - The triumph of pre-training and transfer learning \triangleright

