
Control Theory In Container 
Orchestration

Vallery Lancey
Lead DevOps Engineer, Checkfront



@vllry

Container 
Orchestration 
Fundamentals



@vllry

Goals of Container Management
● Reproducibility.

● Cohabitation.

● Auto-management of instances.



@vllry

System Management

Traditional: a sysadmin 

examines the system, makes a 

judgement, and performs an 

action.

Automatic: the system tracks 

its own state, and translates 

the state to some internal 

action.



@vllry

Key Auto-Management Features
● Allocate appropriate resources.

● Manage network based on container health & state.

● Reap unhealthy containers.

● Maintain container headcount.

● Auto-scale container groups.



@vllry

Control Theory



@vllry

What is Control Theory?
● Engineering topic: how to manage a system using human and 

internal controls.

● Used heavily in...

○ Physical device design

○ Plant/factory management

○ Electrical engineering



@vllry

A Controller
● Inputs dictate what the controller should do (setpoint).

● Outputs dictate what the controlled process should do.



@vllry

Open Loop Controllers
● A controller with only inputs and outputs is an open loop 

controller.

● Can’t respond to feedback from the controlled process.



@vllry

Closed Loop Controller
● Contains feedback from the process to the controller.

● The controller is able to self-correct to achieve the desired 

outcome.



@vllry



@vllry

The Math is Unfortunate
● Control theory is split into linear (PV changes linearly with 

control) and nonlinear problems.

● Most of our problems are nonlinear.

● Nonlinear problems have fewer known methods, and are often 

reduced to simplified linear problems.



@vllry

Applying Control 
Theory To Containers



@vllry

while True {

currentState = getCurrentState()

desiredState = getDesiredState()

makeConform(currentState, desiredState)

}

Process Variable

Setpoint



@vllry

Container Lifecycle: Readiness Probe
● When a container is launched, we don’t want to serve it traffic 

before it’s ready.

● A readiness probe uses some “OK” response (EG HTTP 200) to 

decide when.

● What do we need to build this?

○ Container lifecycle status

○ Probe destination

○ Probe behaviour config



@vllry



@vllry



@vllry



@vllry



@vllry



@vllry

Replica Headcount
● How do we ensure the right number of container copies exist?

● Need to maintain the desired replica count (input).

● Need to check the current number of containers (feedback).

● Need to create or terminate containers accordingly (output).



@vllry

Replication Controller



@vllry



@vllry

Autoscaling



@vllry

Autoscaling Deployments
● Need to track a specified metric (CPU use, network I/O, etc).

● Need to increase or decrease replicas if the metric is 

sufficiently above or below the target.

● Should respond quickly and without overcompensating.



@vllry

Bang-Bang Controller
● Controller with upper and lower bounds, where the set point is 

never exactly met.

● Process is turned on when one extreme is hit, and turns off 

when the other is hit.



@vllry



@vllry



@vllry

Challenges in Designing a Controller
● Accepting a “close enough” error, rather than thrashing.

● Responding quickly without overcompensating.

○ Predict the right replica setpoint.

○ Account for the delay in SP->PV propagation.



@vllry

Delayed Response



@vllry

Bootup Time
● Containers take time to boot (surprise!)

○ Resource allocation.

○ Image pull & app startup.



@vllry



@vllry



@vllry

Accounting for the Delay
● Must guess if no context.

○ Can wait out the grace period, or...

○ Can define some % of the grace period to overscale after.

● Custom controllers can allow context.

○ Can have a statistical explanation of boot time.

○ Can use a custom readiness probe that shows progress (whitebox).



@vllry

Matching Demand



@vllry

Scale Ramp-Up
● Scaling up quickly is especially important.

● Typical controller approaches:

○ Immediately add enough replicas to satisfy load/replicas for 

current load.

○ Keep scaling up each loop, until satisfied.

● Can we keep scaling both fast and precise?



@vllry



@vllry



@vllry

PID: Proportional
The proportional component is a linear response to the magnitude 

of the error.



@vllry

PID: Integral
The integral component is a compensator. It responds to the 

magnitude and duration of the error.



@vllry

PID: Derivative
The derivative component is a predictor of the future error, based 

on the trend of the current error.



@vllry

PID Controllers
● Use the proportional, integral, and derivative components to 

react, compensate, and predict for required output.

● Each component is tuned using a constant.



@vllry

Autoscaling With a PID Controller
● Proportional and integral components drive scaling.

● Integral and derivative components increase scale speed, at the 

cost of overcompensating.

● Derivative is “less accurate” but can help in sharp raises/drops.



@vllry

Autoscaling in Kubernetes
● Kubernetes uses a proportional controller (with a lot of checks 

and balances.

● Prioritizes gradual resolution over unstable resolution.

● Scaling (Horizontal Pod Autoscaler) updates Deployment spec - 

doesn’t touch pods itself.



@vllry

In Summary
● Ensure any controller has the necessary feedback to properly 

achieve its outcome.

● Strictly define expectations of any controller.

● Build discrete, transparent, and testable controllers.

● Ensure shared state has a single source (CP).

● Custom controllers are common based on app behaviour and 

expectations.



@vllry

Oh Yeah, Hi!

● I’m a software/systems person 

at Checkfront (online bookings)

● I work with Kubernetes & “cloud 

stuff”.



@vllry

Thank You!

Brian Liles & coordinators & staff

Joe Beda

Tim St. Clair



@vllry

Audience Questions

@vllry


