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Goals of Container Management
● Reproducibility.

● Cohabitation.

● Auto-management of instances.



@vllry

System Management

Traditional: a sysadmin 

examines the system, makes a 

judgement, and performs an 

action.

Automatic: the system tracks 

its own state, and translates 

the state to some internal 

action.
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Key Auto-Management Features
● Allocate appropriate resources.

● Manage network based on container health & state.

● Reap unhealthy containers.

● Maintain container headcount.

● Auto-scale container groups.
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Control Theory
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What is Control Theory?
● Engineering topic: how to manage a system using human and 

internal controls.

● Used heavily in...

○ Physical device design

○ Plant/factory management

○ Electrical engineering
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A Controller
● Inputs dictate what the controller should do (setpoint).

● Outputs dictate what the controlled process should do.
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Open Loop Controllers
● A controller with only inputs and outputs is an open loop 

controller.

● Can’t respond to feedback from the controlled process.
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Closed Loop Controller
● Contains feedback from the process to the controller.

● The controller is able to self-correct to achieve the desired 

outcome.
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The Math is Unfortunate
● Control theory is split into linear (PV changes linearly with 

control) and nonlinear problems.

● Most of our problems are nonlinear.

● Nonlinear problems have fewer known methods, and are often 

reduced to simplified linear problems.
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Applying Control 
Theory To Containers
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while True {

currentState = getCurrentState()

desiredState = getDesiredState()

makeConform(currentState, desiredState)

}

Process Variable

Setpoint
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Container Lifecycle: Readiness Probe
● When a container is launched, we don’t want to serve it traffic 

before it’s ready.

● A readiness probe uses some “OK” response (EG HTTP 200) to 

decide when.

● What do we need to build this?

○ Container lifecycle status

○ Probe destination

○ Probe behaviour config
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Replica Headcount
● How do we ensure the right number of container copies exist?

● Need to maintain the desired replica count (input).

● Need to check the current number of containers (feedback).

● Need to create or terminate containers accordingly (output).
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Replication Controller
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Autoscaling
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Autoscaling Deployments
● Need to track a specified metric (CPU use, network I/O, etc).

● Need to increase or decrease replicas if the metric is 

sufficiently above or below the target.

● Should respond quickly and without overcompensating.
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Bang-Bang Controller
● Controller with upper and lower bounds, where the set point is 

never exactly met.

● Process is turned on when one extreme is hit, and turns off 

when the other is hit.
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Challenges in Designing a Controller
● Accepting a “close enough” error, rather than thrashing.

● Responding quickly without overcompensating.

○ Predict the right replica setpoint.

○ Account for the delay in SP->PV propagation.
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Delayed Response
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Bootup Time
● Containers take time to boot (surprise!)

○ Resource allocation.

○ Image pull & app startup.
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Accounting for the Delay
● Must guess if no context.

○ Can wait out the grace period, or...

○ Can define some % of the grace period to overscale after.

● Custom controllers can allow context.

○ Can have a statistical explanation of boot time.

○ Can use a custom readiness probe that shows progress (whitebox).
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Matching Demand
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Scale Ramp-Up
● Scaling up quickly is especially important.

● Typical controller approaches:

○ Immediately add enough replicas to satisfy load/replicas for 

current load.

○ Keep scaling up each loop, until satisfied.

● Can we keep scaling both fast and precise?
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PID: Proportional
The proportional component is a linear response to the magnitude 

of the error.
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PID: Integral
The integral component is a compensator. It responds to the 

magnitude and duration of the error.
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PID: Derivative
The derivative component is a predictor of the future error, based 

on the trend of the current error.
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PID Controllers
● Use the proportional, integral, and derivative components to 

react, compensate, and predict for required output.

● Each component is tuned using a constant.
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Autoscaling With a PID Controller
● Proportional and integral components drive scaling.

● Integral and derivative components increase scale speed, at the 

cost of overcompensating.

● Derivative is “less accurate” but can help in sharp raises/drops.
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Autoscaling in Kubernetes
● Kubernetes uses a proportional controller (with a lot of checks 

and balances.

● Prioritizes gradual resolution over unstable resolution.

● Scaling (Horizontal Pod Autoscaler) updates Deployment spec - 

doesn’t touch pods itself.
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In Summary
● Ensure any controller has the necessary feedback to properly 

achieve its outcome.

● Strictly define expectations of any controller.

● Build discrete, transparent, and testable controllers.

● Ensure shared state has a single source (CP).

● Custom controllers are common based on app behaviour and 

expectations.
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Oh Yeah, Hi!

● I’m a software/systems person 

at Checkfront (online bookings)

● I work with Kubernetes & “cloud 

stuff”.
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Thank You!

Brian Liles & coordinators & staff

Joe Beda

Tim St. Clair
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Audience Questions
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