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On Disk Data Structures

Mutable Immutable
* Space allocation * Sequential writes
 In-place updates * Multiple read sources

* Fragmentation * Needs merge



The Log-Structured Merge-Tree (LSM-Tree)
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ABSTRACT. High-performance transaction system applications typically insert rows in a
History table to provide an activity trace; at the same time the transaction system generates log
records for purposes of system recovery. Both types of generated information can benefit from
efficient indexing. An example in a well-known setting is the TPC-A benchmark application,
modified to support efficient queries on the History for account activity for specific accounts.
This requires an index by account-id on the fast-growing History table. Unfortunately, stan-
dard disk-based index structures such as the B-tree will effectively double the 1/O cost of the
transaction to maintain an index such as this in real time, increasing the total system cost up to
fifty percent. Clearly a method for maintaining a real-time index at low cost is desirable. The
Log-Structured Merge-tree (LSM-tree) is a disk-based data structure designed to provide
low-cost indexing for a file experiencing a high rate of record inserts (and deletes) over an
extended period. The LSM-tree uses an algorithm that defers and batches index changes, cas-
cading the changes from a memory-based component through one or more disk components in an
efficient manner reminiscent of merge sort. During this process all index values are contin-
uously accessible to retrievals (aside from very short locking periods), either through the
memory component or one of the disk components. The algorithm has greatly reduced disk arm
movements compared to a traditional access methods such as B-trees, and will improve cost-
performance in domains where disk arm costs for inserts with traditional access methods
overwhelm storage media costs. The LSM-tree approach also generalizes to operations other
than insert and delete. However, indexed finds requiring immediate response will lose I/O ef-
ficiency in some cases, so the LSM-tree is most useful in applications where index inserts are
more common than finds that retrieve the entries. This seems to be a common property for
History tables and log files, for example. The conclusions of Section 6 compare the hybrid use
of memory and disk components in the LSM-tree access method with the commonly understood
advantage of the hybrid method to buffer disk pages in memory.

1. Introduction

As long-lived transactions in activity flow management systems become commercially available
([101, [11], [12], [20], [24], [27]), there will be increased need to provide indexed access
to transactional log records. Traditionally, transactional logging has focused on aborts and re-
coverv. and has required the svstem to refer back to a relatively short-term historv in normal
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Merge Process

(phone: 111-222-333, ts: 100)

(phone: 333-777-444, ts: 100)

(phone: 777-555-444, ts: 100) ‘ Alex: (phone: 555-777-888, ts: 200)

‘ Sid: (phone: 777-555-444, ts: 100)

Alex: (phone: 555-777-888, ts: 200) ‘ Nancy: (phone: 777-333-222, ts: 200)

John: (DELETE, ts: 200)

Nancy: (phone: 777-333-222, ts: 200)




Merge Arithmetics
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Sorted String Tables

Index Block
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Compaction




Summary

Immutable

Write-optimised

Read multiplexing

High maintenance costs
Well-suited for concurrent ops
Simple to implement






The Ubiquitous B-Tree

DOUGLAS COMER

Computer Science Department, Purdue Unwersity, West Lafayette, Indiana 47907

B-trees have become, de facto, a standard for file organization. File indexes of users,
dedicated database systems, and general-purpose access methods have all been proposed
and implemented using B-trees This paper reviews B-trees and shows why they have
been so successful It discusses the major variations of the B-tree, especially the B*-tree,
contrasting the relative merits and costs of each implementation. It illustrates a general
purpose access method which uses a B-tree.

Keywords and Phrases: B-tree, B*-tree, B*-tree, file organization, index
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INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place

it in main memory before it can be pro-
cescsed In order to make gond nice of the

might be labeled with the employees’ last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.
Associated with a large, randomly ac-
cessed file in a computer system is an index



B-Trees

Ordered data structure

Often used for indexing

Usually implemented as mutable DS
Self Balancing



Anatomy of B-Tree
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Invariants

David

Lenny

Ron

l

k <= David

l

David < k <= Lenny

l

Lenny <= k <= Ron

l

k > Ron



o] o

g
—

.

&

0 |

o |




Splits and Merges
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Summary

Mutable

Read-optimised

Requires splits/merges/rebalancing
Block storage optimised

Overhead for in-place updates



Designhing Access Methods: The RUM Conjecture
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ABSTRACT

The database research community has been building methods to
store, access, and update data for more than four decades. Through-
out the evolution of the structures and techniques used to access
data, access methods adapt to the ever changing hardware and work-
load requirements. Today, even small changes in the workload or
the hardware lead to a redesign of access methods. The need for
new designs has been increasing as data generation and workload
diversification grow exponentially, and hardware advances intro-
duce increased complexity. New workload requirements are intro-
duced by the emergence of new applications, and data is managed
by large systems composed of more and more complex and het-
erogeneous hardware. As a result, it is increasingly important to
develop application-aware and hardware-aware access methods.

The fundamental challenges that every researcher, systems ar-
chitect, or designer faces when designing a new access method are
how to minimize, i) read times (R), ii) update cost (U), and iii)
memory (or storage) overhead (M). In this paper, we conjecture
that when optimizing the read-update-memory overheads, optimiz-
ing in any two areas negatively impacts the third. We present a
simple model of the RUM overheads, and we articulate the RUM
Conjecture. We show how the RUM Conjecture manifests in state-
of-the-art access methods, and we envision a trend toward RUM-
aware access methods for future data systems.

1. INTRODUCTION

Michael S. Kester~ Lukas M. Maas*
Anastasia Ailamaki*

TIBM Research, Zurich

Radu Stoicaf
Mark Callaghan

*EPFL, Lausanne °Facebook, Inc.

one tailored to a set of important workload patterns, or for match-
ing critical hardware characteristics. Applications evolve rapidly
and continuously, and at the same time, the underlying hardware
is diverse and changes quickly as new technologies and architec-
tures are developed [1]. Both trends lead to new challenges when
designing data management software.

The RUM Tradeoff. A close look at existing proposals on access
methods! reveals that each is confronted with the same fundamen-
tal challenges and design decisions again and again. In particular,
there are three quantities and design parameters that researchers
always try to minimize: (1) the read overhead (R), (2) the up-
date overhead (U), and (3) the memory (or storage) overhead (M),
henceforth called the RUM overheads. Deciding which overhead(s)
to optimize for and to what extent, remains a prominent part of the
process of designing a new access method, especially as hardware
and workloads change over time. For example, in the 1970s one
of the critical aspects of every database algorithm was to minimize
the number of random accesses on disk; fast-forward 40 years and
a similar strategy is still used, only now we minimize the number
of random accesses to main memory. Today, different hardware
runs different applications but the concepts and design choices re-
main the same. New challenges, however, arise from the exponen-
tial growth in the amount of data generated and processed, and the
wealth of emerging data-driven applications, both of which stress
existing data access methods.

The RUM Conjecture: Read, Update, Memory — Optimize Two
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Wrapping Up
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