
Observability
The Health of Every Request

Nathan LeClaire
nathan@honeycomb.io
twitter.com/dotpem

https://twitter.com/dotpem


Overview

On Observability
Where we have come from and why 
does o11y matter?

o11y Report Card
How do various approaches stack up?

The Health of Every Request
Why should we care, and how do we 
care?

Making o11y Affordable
How do those of us with limited 
resources make it work?



$(whoami)

Nathan LeClaire

● Previously Open Source Engineer at Docker.

● Platform Engineer and Sales Engineer at Honeycomb.

● Writer of “funny” tweets @dotpem and sometimes articles 
at https://nathanleclaire.com.

● Weapons of choice: Golang, Linux debugging tools, low 
bar squat, “Epic & Melodic” metal playlist on Spotify.

https://nathanleclaire.com


On Observability



What’s the big deal with o11y?



The world used to be simpler.

Debugging is so 
easy. I just have one 
server I SSH into and 
I use tail on logs. 

BOOM!



But then VMs happened...



… then containers happened.



Now, 
#Serverless is 
happening?



But… our o11y 
tools are still bad 
and we should 
feel bad.



We have monitoring but we need 
observability

vs.



Defining observability

“Can I ask new questions about my system 
from the outside, and understand what is 

happening on the inside - all without 
shipping any new code?”



More observable businesses will 
build better platforms

Seriously though, the winners of the 
future will be united by at least one 
common thread: they will offer more 
functionality and user customizability, 
up to and including executing arbitrary 
code. And more customizability comes 
with more o11y problems.

Just look at Shopify, or Slack, or the 
recently released Github Actions 
feature. Why would Salesforce would 
buy Heroku? Because they are a 
platform company, not a CRM 
company.

https://www.shopify.com/enterprise/how-customizable-is-shopify
https://github.com/features/actions


More observable businesses will 
attract better engineers

Company A:
- Devs spend most of 

their time writing code
- o11y gives them the 

confidence to deploy 
frequently

- o11y makes it easy to 
understand how your 
users are interacting 
with your code and 
how it’s performing

Company B:
- Devs spend most of 

their time firefighting
- Deploys are an 

infrequent occurrence 
because they always 
cause new bugs

- Engineers have very 
few ways to 
understand what their 
code is doing once 
deployed



More observable businesses will 
beat their competitors



“Three Pillars?”



o11y report card



Metrics - D



Logs - C



Traces - B



Events in Columnar Store - A

V
E

N
D

O
R

 D
IS

C
LA

IM
E

R



The Health of Every 
Request



How many requests do most 
apps get per user these days?

A FUCKLOAD.



Everyone trashes averages, but 
P95 and P99 have started having 
dramatically less signal too.
Many of your users, not just 1/100, will hit the 99th percentile of 
requests.

We need to know context like:

● Which users or groups are seeing slowness or errors?
● Which database queries are executing slowly?
● Which hosts or containers did the problem requests pass 

through?
● What specifically is going wrong in malfunctioning 

background jobs?



Where we want to be

Nope. A deploy failed halfway through 
and now we have two versions.

Everything lower than 2.0.1, it must 
have been a breaking change in our 
API.

It’s just one user, but they’re our 
biggest customer.

No one source of problems 
contributing to high CPU can be 
identified. Buy bigger servers.

● Are all the servers running the 
same version?

● Which client versions are seeing 
errors?

● Is just one user or group seeing 
issues, or is everyone?

● Do we need to upgrade our 
instances, or fix our code?

o11y



Making o11y Affordable



Facebook pioneered SCUBA, but 
most of us aren’t FAANG.

https://research.fb.com/wp-content/uploads/2016/11/scuba-diving-into-data-at-facebook.pdf


How to make o11y viable as scale 
increases? Sample.









BUT THIS WHOLE TALK IS 
ABOUT THE HEALTH OF EVERY 
REQUEST!



OK, OK. At scale you can’t store everything forever.

But:

1. Statistics have your back.

2. Any problem worth worrying about will happen 
multiple times, or be big enough you can’t miss it.

3. Smart sampling keeps most of what you want, and 
less of the boring stuff.

4. In the future, we’ll likely be able to keep everything 
for a small duration, and sample out over time.







Example: Crank up 
sample rate on 

ingesting Elastic 
Load Balancer data 

to 50x retention.





https://research.fb.com/publications/canopy-end-to-end-performance-tracing-at-s
cale/

https://research.fb.com/publications/canopy-end-to-end-performance-tracing-at-scale/
https://research.fb.com/publications/canopy-end-to-end-performance-tracing-at-scale/




https://people.mpi-sws.org/~jcmace/papers/lascasas2018weighted.pdf

https://people.mpi-sws.org/~jcmace/papers/lascasas2018weighted.pdf




Key Takeaways
● Observability gets you answers about the “why”, “how”, “what” 

of issues that monitoring cannot and can reduce issue 
resolution time from days to minutes.

● Sampling is a great way to make o11y affordable and scalable.

● Observability will be a key differentiator in successful 
businesses in the coming years.



Thanks for 
coming to my 

talk !

I’m on Twitter -

@dotpem 

E-mail me:

nathan@honeycomb.io

Or come talk to me at our booth!

mailto:nathan@honeycomb.io

