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ML at Uber

○ Uber Eats

○ ETAs

○ Self-Driving Cars 

○ Customer Support 

○ Dispatch

○ Personalization

○ Demand Modeling

○ Dynamic Pricing

○ Forecasting

○ Maps 

○ Fraud

○ Safety

○ Destination Predictions

○ Anomaly Detection

○ Capacity Planning

○ And many more...



ML at Uber - Eats

○ Models used for

○ Ranking of restaurants and 
dishes

○ Delivery times

○ Search ranking

○ 100s of ML models called to render 
Eats homepage



ML at Uber - Self-Driving Cars



ML at Uber - ETAs

○ ETAs are core to customer experience 

○ ETAs used by myriad internal systems

○ ETA are generated by route-based 
algorithm called Garafu

○ ML model predicts the Garafu error 

○ Use the predicted error to correct the ETA

○ ETAs now dramatically more accurate



ML at Uber - Map Making



ML at Uber - Map Making 



ML at Uber - Map Making



ML at Uber - Destination Prediction



ML at Uber - Spatiotemporal Forecasting

Supply 

○ Available Drivers

Demand

○ Open Apps

Other 

○ Request Times

○ Arrival Times 

○ Airport Demand



ML at Uber - Customer Support

○ 5 customer-agent communication 
channels

○ Hundreds of thousands of tickets 
surfacing daily on the platform across 
400+ cities

○ NLP models classify tickets and 
suggest response templates 

○ Reduce ticket resolution time by 10%+ 
with same or higher CSAT

https://www.uber.com/info/5-ways-to-contact-Uber-for-help/
https://www.uber.com/info/5-ways-to-contact-Uber-for-help/


ML at Uber - One Click Chat

○ It’s important for riders and driver 
partners to be able to communicate 
efficiently during pickup

○ The one click chat feature streamlines 
communication between riders and 
driver-partners

○ Uses natural language processing 
(NLP) models that predict and display 
the most likely replies to in-app chat 
messages. 



ML Platform



MISSION

Enable engineers and data scientists across the 
company to easily build and deploy machine learning 
solutions at scale.



ML Foundations - Organization, Process, and Technology



ML Platform Evolution

V1: Enable ML at Scale

○ End-to-end workflow

○ High scale training

○ High scale model serving

○ Feature Store

V2: Accelerate ML

○ PyML

○ Horovod

○ AutoTune

○ Manifold Model Viz

○ Realtime Model 

Monitoring



Enable ML at Scale



Same basic ML workflow & system requirements for

○ Traditional ML & Deep Learning

○ Supervised, unsupervised, & semi-supervised 

learning

○ Online learning

○ Batch, online, & mobile deployments

○ Time-series forecasting

Machine Learning Workflow
MANAGE DATA

TRAIN MODELS

EVALUATE MODELS

DEPLOY MODELS

MAKE PREDICTIONS

MONITOR PREDICTIONS



Enable ML at Scale:

Manage Data



Problem

○ Hardest part of ML is finding good features

○ Same features are often used by different models built by different teams

Solution

○ Centralized feature store for collecting and sharing features

○ Platform team curates core set of widely applicable features

○ Modellers contribute more features as part of ongoing model building

○ Meta-data for each feature to track ownership, how computed, where used, etc

○ Modellers select features by name & join key. Offline & online pipelines are 
automatically deployed

Feature Store (aka Palette)



Enable ML at Scale:

Train Models



Large-scale distributed training (billions of samples)

○ Decision trees

○ Linear and logistic models

○ Unsupervised learning

○ Time series forecasting

○ Hyperparameter search for all model types 

Speed and reliability

○ Fuse operators into single job for speed

○ Break operators into separate jobs to reliability

Distributed Training of Non-DL Models



○ Data-parallelism works best 
when model is small enough to 
fit on each GPU

○ Ring-allreduce is more efficient 
than parameter servers for 
averaging weights

○ Faster training and better GPU 
utilization

○ Much simpler training scripts

○ More details at 
http://eng.uber.com/horovod

Distributed Training of Deep Learning Models with Horovod



Enable ML at Scale:

Manage & Eval Models



Evaluate Models

Problem

○ It takes many iterations to produce a good model

○ Keeping track of how a model was built is important

○ Evaluating and comparing models is hard

With every trained model, we capture standard metadata and reports

○ Full model configuration, including train and test datasets       

○ Training job metrics

○ Model accuracy metrics

○ Performance of model after deployment



Model Visualization - Regression Model 



Model Visualization - Classification Model 



Model Visualization - Feature Report 



Model Visualization - Decision Tree 



Enable ML at Scale:

Deployment & Serving



Prediction Service

○ Thrift service container for one or more models

○ Scale out in Docker on Mesos

○ Single or multi-tenant deployments

○ Connection management and batched / parallelized queries to Cassandra

○ Monitoring & alerting

Deployment

○ Model & DSL packaged as JAR file

○ One click deploy across DCs via standard Uber deployment infrastructure

○ Health checks and rollback

Online Prediction Service



Realtime Predict Service

Deployed ModelDeployed Model
Client

Service

Deployed Model

Model

Cassandra Feature StoreRouting 
Infra

DSLModel Manager1

2

3
4

5

Online Prediction Service



Online Prediction Service

Typical p95 latency from client service 

○ ~5ms when all features from client service

○ ~10ms when joining pre-computed features from Cassandra

Peak prediction volume across current online deployments

○ 1M+ QPS



Enable ML at Scale:

Monitor Models in Production



Monitor Predictions

Problem

○ Models trained and evaluated against 
historical data

○ Need to ensure deployed model is 
making good predictions going forward

Solution

○ Log predictions & join to actual 
outcomes

○ Publish metrics feature and prediction 
distributions over time

○ Dashboards and alerts



Enable ML at Scale:

System Architecture













           Management

Monitor

API

Python / Java 



https://docs.google.com/file/d/1-LcZqSj9DBCDvmqma13uDbrcmP2p05Jl/preview


Accelerate ML



ML Platform Evolution

V1: Enable ML at Scale

○ End-to-end workflow

○ High scale training

○ High scale model serving

○ Feature Store

V2: Accelerate ML

○ PyML

○ Horovod

○ AutoTune

○ Manifold Model Viz

○ Realtime Model 

Monitoring



Keys to High Velocity ML

○ Reduce friction at every step of complex, iterative workflow

○ End-to-end ownership by modeler - no handoffs

○ Bring the tools to the modeler

○ Simple, elegant APIs

○ Rich visual tools for understanding data and models

○ Measure time from idea to model in production



Accelerate ML:

PyML



PyML

○ Problem

○ Michelangelo initially targeted high scale use cases

○ Good for first wave of production use cases

○ But, not very easy for early prototyping and limited flexibility

○ Solution

○ Support regular Python for lower scale, easy to use and very flexible modeling

○ Import any libraries

○ Train any model

○ Implement serving interface with predict() method

○ Call API to package model artifacts and upload to Michelangelo

○ Deploy to production via API or Michelangelo UI



PyML



PyML - 1. Train and Test Model



PyML - 2. Save Model



PyML - 3. Implement Serving Interface



PyML - 4. Package and Upload Model



PyML - 5. See Model in Michelangelo UI



PyML - 6. Deploy and Test Model



PyML - Architecture



Standard Model PyML Model

PyML - Serving Architecture



Accelerate ML:

Horovod



Horovod - Intro

○ There are many ways to do data-parallel training.

○ Some are more confusing than others.  UX varies greatly.

○ Our goals:

○ Infrastructure people deal with choosing servers, network gear, container 

environment, default containers, and tuning distributed training 

performance.

○ ML engineers focus on making great models that improve business using 

deep learning frameworks that they love.



Horovod - Complex Parameter Server Setup

Image Source: TensorFlow 
-- https://www.tensorflow.org/deploy/distributed

https://www.tensorflow.org/deploy/distributed


Horovod - Simple Horovod Setup
import tensorflow as tf
import horovod.tensorflow as hvd

# Initialize Horovod
hvd.init()

# Pin GPU to be used
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

# Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01)

# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

# Add hook to broadcast variables from rank 0 to all other processes during initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]

# Make training operation
train_op = opt.minimize(loss)

# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir="/tmp/train_logs", 
                                       config=config, hooks=hooks) as mon_sess:
  while not mon_sess.should_stop():
    # Perform synchronous training.
    mon_sess.run(train_op)

Initialize Horovod

Assign a GPU to each TensorFlow process

Wrap regular TensorFlow optimizer with 
Horovod optimizer which takes care of 
averaging gradients using ring-allreduce

Broadcast variables from the first process to 
all other processes to ensure consistent 
initialization



Accelerate ML:

Manifold Viz



Manifold Viz



Accelerate ML:

AutoTune



AutoTune



Key Lessons Learned



Key Lessons Learned

○ Let developers use the tools that they want

○ Data is the hardest part of ML and the most important piece to get right

○ It can take significant effort to make open source and commercial components 

work well at scale.

○ Develop iteratively based on user feedback, with the long-term vision in mind

○ Real-time ML is challenging to get right



Thank you!
eng.uber.com/michelangelo

eng.uber.com/horovod
uber.com/careers
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