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| ML at Uber

O

Uber Eats

ETAs

Self-Driving Cars
Customer Support
Dispatch
Personalization
Demand Modeling

Dynamic Pricing

Forecasting

Maps

Fraud

Safety

Destination Predictions
Anomaly Detection
Capacity Planning

And many more...



ML at Uber - Eats
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ML at Uber - Self-Driving Cars
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o ETAs are core to customer experience ® | Meet at 1456 Market st
o ETAs used by myriad internal systems

o ETA are generated by route-based
algorithm called Garafu

o ML model predicts the Garafu error
o Use the predicted error to correct the ETA

o ETAs now dramatically more accurate

‘\". Connecting you to nearby drivers




ML at Uber - Map Making
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ML at Uber - Map Making
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ML at Uber - Map Making
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ML at Uber - Destination Prediction
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ML at Uber - Spatiotemporal Forecasting

Supply

o Available Drivers

Demand

o  Open Apps

Other
o Request Times
o Arrival Times

o Airport Demand




| ML at Uber - Customer Support

o 5 customer-agent communication
Top 3
channels Suggestions

o Hundreds of thousands of tickets COTA System
surfacing daily on the platform across
400+ cities

e N

o NLP models classify tickets and —I .
suggest response templates Tickets Michelangelo W

S i N

o Reduce ticket resolution time by 10%+
with same or higher CSAT Uber

Data Store



https://www.uber.com/info/5-ways-to-contact-Uber-for-help/
https://www.uber.com/info/5-ways-to-contact-Uber-for-help/

| ML at Uber - One Click Chat

o Whole Foods Market
1221 S State St, San Francis...

o It’s important for riders and driver
partners to be able to communicate
efficiently during pickup

o The one click chat feature streamlines A
communication between riders and
driver-partners

o Uses natural language processing
(NLP) models that predict and display
the most likely replies to in-app chat L
messages. Vishwanath

2riders ¢

Waiting for rider




ML Platform



MISSION

Enable engineers and data scientists across the
company to easily build and deploy machine learning
solutions at scale.



ML Foundations - Organization, Process, and Technology

Process

Launch processes
Planning

Best practices
Community
Playbooks
Education

Technology

End-to-end workflow
ML as Software Engineering
Model developer velocity

o Modularit d tierd
Mlchelange|0 ar((:hit:ctuyr:n :
Machine Learning
Platform




| ML Platform Evolution

V1: Enable ML at Scale
o End-to-end workflow
o High scale training
o High scale model serving

o Feature Store

V2: Accelerate ML

©)

©)

©)

PyML

Horovod

AutoTune

Manifold Model Viz
Realtime Model

Monitoring




Enable ML at Scale



| Machine Learning Workflow

Same basic ML workflow & system requirements for

O

O

Traditional ML & Deep Learning

Supervised, unsupervised, & semi-supervised
learning

Online learning

Batch, online, & mobile deployments

Time-series forecasting

MANAGE DATA

l

TRAIN MODELS

|

EVALUATE MODELS

l

DEPLOY MODELS

|

MAKE PREDICTIONS




Enable ML at Scale:
Manage Data



Feature Store (aka Palette)

Problem
o Hardest part of ML is finding good features

o Same features are often used by different models built by different teams

Solution
o Centralized feature store for collecting and sharing features
o Platform team curates core set of widely applicable features
o  Modellers contribute more features as part of ongoing model building
o Meta-data for each feature to track ownership, how computed, where used, etc

o  Modellers select features by name & join key. Offline & online pipelines are
automatically deployed



Enable ML at Scale:
Train Models



Distributed Training of Non-DL Models

Large-scale distributed training (billions of samples)

(@)

Decision trees

Linear and logistic models
Unsupervised learning
Time series forecasting

Hyperparameter search for all model types

Speed and reliability

(@)

(@)

Fuse operators into single job for speed

Break operators into separate jobs to reliability



| Distributed Training of Deep Learning Models with Horovod

Training Process

o Data-parallelism works best
when model is small enough to Bl Sl

fit on each GPU

Training Process
. II Averaged I
. - . Gradients

o Ring-allreduce is more efficient

than parameter servers for
N e

averaging weights ; -
1. Read Data 2. Compute Model 3. Average Gradients 4. Update Model
Updates (Gradients)

o Faster training and better GPU

utilization Training with synthetic data on NVIDIA® Pascal™ GPUs
o Much simpler training scripts o
o 12,000.0
0 % 10,000.0
o More details at Ko
http://eng.uber.com/horovod Fl m
S —— m—

Inception V3 ResNet-101
Number of GPUs and model name

M Distributed TensorFlow Horovod [Olideal




Enable ML at Scale:

Manage & Eval Models



Evaluate Models

Problem
o It takes many iterations to produce a good model
o Keeping track of how a model was built is important

o  Evaluating and comparing models is hard

With every trained model, we capture standard metadata and reports
o  Full model configuration, including train and test datasets
o  Training job metrics
o Model accuracy metrics

o Performance of model after deployment



Model Visualization - Regression Model
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Model Visualization - Classification Model
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Model Visualization - Feature Report
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Model Visualization - Decision Tree
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Enable ML at Scale:

Deployment & Serving



Online Prediction Service

Prediction Service
o  Thrift service container for one or more models
o Scale out in Docker on Mesos
o  Single or multi-tenant deployments
o  Connection management and batched / parallelized queries to Cassandra

o Monitoring & alerting

Deployment
o Model & DSL packaged as JAR file
o  One click deploy across DCs via standard Uber deployment infrastructure

o Health checks and rollback



| Online Prediction Service

Realtime Predict Service

©

Deployed Model

Client
Service

Model Manager @ L —> DSL

Cassandra Feature Store

Routing
Infra

™~ Model




Online Prediction Service

Typical p95 latency from client service
o ~bms when all features from client service

o ~10ms when joining pre-computed features from Cassandra

Peak prediction volume across current online deployments

o 1M+ QPS



Enable ML at Scale:
Monitor Models in Production



Monitor Predictions

Problem w00
o Models trained and evaluated against E::
historical data *
o Need to ensure deployed model is -
making good predictions going forward —~——— L~ .
Solution “
o Log predictions & join to actual 0 b~ - —
outcomes G f f f T .e"& .o"&

o  Publish metrics feature and prediction
distributions over time

o Dashboards and alerts



Enable ML at Scale:
System Architecture
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https://docs.google.com/file/d/1-LcZqSj9DBCDvmqma13uDbrcmP2p05Jl/preview

Accelerate ML



| ML Platform Evolution

V1: Enable ML at Scale
o End-to-end workflow
o High scale training
o High scale model serving

o Feature Store

V2: Accelerate ML
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PyML

Horovod

AutoTune

Manifold Model Viz
Realtime Model

Monitoring




| Keys to High Velocity ML

o Reduce friction at every step of complex, iterative workflow
o End-to-end ownership by modeler - no handoffs

o Bring the tools to the modeler

o Simple, elegant APIs

o Rich visual tools for understanding data and models

o Measure time from idea to model in production



Accelerate ML.:

PyML



| PyML

o  Problem

(@)

o

(@)

Michelangelo initially targeted high scale use cases
Good for first wave of production use cases

But, not very easy for early prototyping and limited flexibility

o  Solution

o

(@)

(@)

Support regular Python for lower scale, easy to use and very flexible modeling
Import any libraries

Train any model

Implement serving interface with predict() method

Call API to package model artifacts and upload to Michelangelo

Deploy to production via API or Michelangelo Ul
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Michelangelo

Trained by Michelangelo via Apache Spark
Fixed set of supported algorithms
Supports consistent training/serving
preprocessing via fixed DSL

No dependency isolation

Replicate high-QPS online
models in Michelangelo prior
to full-scale rollout

Michelangelo PyML

Trained by user

Supports any custom Python model
Supports custom Python-based
preprocessing at serving time

Full dependency isolation

Flexibility



PyML - 1. Train and Test Model

import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer

# Prepare the dataset

dataset = load_breast_cancer()

feature_columns = [name.replace(' ','_') for name in dataset.feature_names.tolist()]

pandas_df = pd.DataFrame(data= np.c_[dataset.data, dataset.target],
columns=feature_columns + ['target'])

# Train logistic regression
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(dataset.data,
dataset.target,
random_state=42)

log_reg = LogisticRegression()

log_reg.fit(X_train, y_train)

# Test that model works on first few records
log_reg.predict_proba(pandas_df[feature_columns])[:10,0]

array([ 1. , ©.99999995, ©.99999994, ©0.41742828, ©.99998692,
0.76040329, 0.99999709, ©0.97970554, 0.90590637, ©.99841058])




| PyML - 2. Save Model

# Create prediction_model folder
!mkdir -p prediction_model

# Export the model weights
from sklearn.externals import joblib

joblib.dump(log_reg, 'prediction_model/weights.pkl')

# Export feature columns
import pickle
pickle.dump(feature_columns, open('prediction_model/feature_columns.pkl’,

‘wb"))




| PyML - 3. Implement Serving Interface

# Create model.py inline via Jupyter command "writefile"
%%writefile prediction_model/model.py

import pandas as pd

import numpy as np

import pickle

from pyml.model.dataframe_model import DataFrameModel
from sklearn.externals import joblib

class LogisticRegressionModel(DataFrameModel):
"""A DataFrameModel takes input as a pandas DataFrame and produces predictions as a Pandas
Dataframe.

def __init__ (self):
super(LogisticRegressionModel, self).__init_ ()

# Load the model weights and feature columns
self.clf = joblib.load('weights.pkl"')
self.feature_columns = pickle.load(open('feature_columns.pkl', 'rb'))

predict(self, df):

df[ 'probability'] = self.clf.predict_proba(
df[self.feature_columns])[:,0]

return df




PyML - 4. Package and Upload Model

from pyml import PyMLModel

pyml_model = PyMLModel(model_path="prediction_model/", model_name=example_prediction_model)
pyml_model.predict(pandas_df)[:2][ 'probability’]

0.999995
0.99999%6

from pyml import Client
client = Client(user_email="kstumpf@uber.com", team_name="michelangelo")

# Upload the model and build the model's Docker image
model_id = client.upload_model(pyml_model)




PyML - 5. See Model in Michelangelo Ul

Iﬁ P @ whatsnew? @ © ¥

My Test Models

Project used for demonstration purposes

MODELS

DEPLOY




| PyML - 6. Deploy and Test Model

client.deploy_model(model_id)

from pyml import OnlineClient

online_client = OnlineClient(model_id=model_id)
output_df = online_client.predict(pandas_df[:2])
print output_df[['target’, 'probability’']]

target probability
0 0.0 0.999996
1 0.0 0.999995




PyML - Architecture

PyML folder

model.py

model antifacts
{such as weights)

requirements,txt

packages. txt

setup.sh

validation data

Offline Predictions

| Predictions

Request Docker Container Features Hive

PySpark
T "  modelpy &
artifacts

-— Tables
PyML client

Predictions
Hive Table

e e — |

/

/

Docker ¢
Registry

Docker Container \

Nested Docker Container

Online Prediction PyML Server
Service ——+  modelpy&

artifacts

! Prediction




PyML - Serving Architecture

Standard Model PyML Model

Host Machine Host Machine

Docker Container Docker Container

Online Prediction Service Nested Docker Container

PyML gRPC Server

Extemal Online Prediction Service ~——
Pradiction MOdelS External Forwarded model.py &

Requeast Prediction Prediction artifacts
Request Request




Accelerate ML.:

Horovod



Horovod - Intro

o There are many ways to do data-parallel training.

o Some are more confusing than others. UX varies greatly.

o Qur goals:

o Infrastructure people deal with choosing servers, network gear, container
environment, default containers, and tuning distributed training
performance.

o ML engineers focus on making great models that improve business using

deep learning frameworks that they love.



Horovod - Complex Parameter Server Setup

import argparse
import sys

import tensorflow as tf

FLAGS = Non

FLAGS.ps_hosts.split("
worker R _hosts. spllt(“ ")

# Create a cluster from the parameter server and worker hosts.

cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# Create and start a server for the local task.
server = tf.train.Server(cluster
job_name=FLAGS . job_name,
task_index=FLAGS.task_index)

if FLAGS.job_:
server.join()
elif FLAGS.job_name =

# Assigns ops to the local worker by default

7ith tf.device(tf.train.replica device sette:
worker_device="/job:worker/task:3d" % FLACS. task_index,
cluster=cluster)

# Eaildiscds e
glcbal step = tf.contrib.framework.get or_create_global step()

train_op = tf.train.AdagradOptimizer(0.01).minimize(
loss, global step=global_step)

# The StopAtStepHook handles stopping after running given steps.
hooks=[tf.train.StopAtStepHook (last_ste )

# The MonitoredTrainingSession takes care of session initialization,

# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.

with tf.train.MonitoredTrainingSession(master=server.target,

AGS.task_index 0),
checkpoint_dir="/tmp/train_logs",
hooks=hooks) as mon_sess:

le not mon_sess.should_stop():
# Run a training step asynchronously.
# See “tf.train.SyncReplicasOptimizer’ for additional details on how to
# perform *synchronous* training.
# mon_sess.run handles AbortedError in case of preempted PS.
mon_sess.run(train_op)
main__"
.ArgumentParser ()
type", "bool", lambda v: v.lower()
# Flags for defining the tf.train.ClusterSpec
parser.add_argument (
"--ps_hosts",

-separated list of hostname:port pairs”
parser.add argument(
-worker_hosts"
help="Comma-separated list of hostnamesport pairs®
)
parser. add. argument(

‘worker

£ risss for otinizg th ct.sesin.sorver Image Source: TensorFlow

-task_index",

T R -- https://www.tensorflow.org/deploy/distributed

)
FLAGS, unparsed = parser.parse_known_args()



https://www.tensorflow.org/deploy/distributed

Horovod - Simple Horovod Setup

import tensorflow as tf

import horovod.tensorflow as hvd Initialize Horovod

# Initialize Horovod
hvd.init()
Assign a GPU to each TensorFlow process
# Pin GPU to be used
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

# Build model... Wrap regular TensorFlow optimizer with
loss = ... — .
Horovod optimizer which takes care of

opt = tf.train.AdagradOptimizer(0.01)
o o averaging gradients using ring-allreduce
# Add Horovod Distributed Optimizer

opt = hvd.DistributedOptimizer(opt)

# Add hook to broadcast variables from rank 0 to all other processes during initialization. ) ]
hooks = [hvd.BroadcastGlobalVariablesHook(0)] Broadcast variables from the first process to

# Make training operation all other processes to ensure consistent
train_op = opt.minimize(loss) initialization

# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# Or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir="/tmp/train_logs",
config=config, hooks=hooks) as mon_sess:
while not mon_sess.should_stop():
# Perform synchronous training.
mon_sess.run(train_op)




Accelerate ML.:

Manifold Viz



Manifold Viz

Uber

Michelangelo Sample Model

Back to Projects Performance Comparison Feature Attribution
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Accelerate ML.:

AutoTune



AutoTune

P @® whatsnew?» @ © ¥

[realtime marketplace] model

Model Settings

—— bayes (median)

—— grid (median)

GBD Tree with AutoTune bayes confidence interval
grid confidence interval

Description

Model Type

GBD Tree Classification [Binary]

EEl W useautotune

MSE loss

Algorithm Acquisition Function

Bayesian Optimization with Gaussian Process Kernel Lower Confidence Bound

Max Depth Max Count Max After Bal Number Of Bins
6-10 100-200 2 10

50-120 or 50,100,120 ) Example 10-50 or 10,3050

Min Rows Learn Rate Probability Calibration

30 40 50

100 0.1-0.2 None
Iteration no.

50-200 or 50,100,200 B 001-02 or 0.01,0.1.02




Key Lessons Learned



Key Lessons Learned

o Let developers use the tools that they want

o Data is the hardest part of ML and the most important piece to get right

o It can take significant effort to make open source and commercial components
work well at scale.

o Develop iteratively based on user feedback, with the long-term vision in mind

o Real-time ML is challenging to get right



Thank you!

eng.uber.com/michelangelo
eng.uber.com/horovod
uber.com/careers
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