
Michelangelo
Jeremy Hermann, Machine Learning Platform @ Uber

ML at Uber

Uber Data

Uber Data

ML at Uber

○ Uber Eats

○ ETAs

○ Self-Driving Cars

○ Customer Support

○ Dispatch

○ Personalization

○ Demand Modeling

○ Dynamic Pricing

○ Forecasting

○ Maps

○ Fraud

○ Safety

○ Destination Predictions

○ Anomaly Detection

○ Capacity Planning

○ And many more...

ML at Uber - Eats

○ Models used for

○ Ranking of restaurants and
dishes

○ Delivery times

○ Search ranking

○ 100s of ML models called to render
Eats homepage

ML at Uber - Self-Driving Cars

ML at Uber - ETAs

○ ETAs are core to customer experience

○ ETAs used by myriad internal systems

○ ETA are generated by route-based
algorithm called Garafu

○ ML model predicts the Garafu error

○ Use the predicted error to correct the ETA

○ ETAs now dramatically more accurate

ML at Uber - Map Making

ML at Uber - Map Making

ML at Uber - Map Making

ML at Uber - Destination Prediction

ML at Uber - Spatiotemporal Forecasting

Supply

○ Available Drivers

Demand

○ Open Apps

Other

○ Request Times

○ Arrival Times

○ Airport Demand

ML at Uber - Customer Support

○ 5 customer-agent communication
channels

○ Hundreds of thousands of tickets
surfacing daily on the platform across
400+ cities

○ NLP models classify tickets and
suggest response templates

○ Reduce ticket resolution time by 10%+
with same or higher CSAT

https://www.uber.com/info/5-ways-to-contact-Uber-for-help/
https://www.uber.com/info/5-ways-to-contact-Uber-for-help/

ML at Uber - One Click Chat

○ It’s important for riders and driver
partners to be able to communicate
efficiently during pickup

○ The one click chat feature streamlines
communication between riders and
driver-partners

○ Uses natural language processing
(NLP) models that predict and display
the most likely replies to in-app chat
messages.

ML Platform

MISSION

Enable engineers and data scientists across the
company to easily build and deploy machine learning
solutions at scale.

ML Foundations - Organization, Process, and Technology

ML Platform Evolution

V1: Enable ML at Scale

○ End-to-end workflow

○ High scale training

○ High scale model serving

○ Feature Store

V2: Accelerate ML

○ PyML

○ Horovod

○ AutoTune

○ Manifold Model Viz

○ Realtime Model

Monitoring

Enable ML at Scale

Same basic ML workflow & system requirements for

○ Traditional ML & Deep Learning

○ Supervised, unsupervised, & semi-supervised

learning

○ Online learning

○ Batch, online, & mobile deployments

○ Time-series forecasting

Machine Learning Workflow
MANAGE DATA

TRAIN MODELS

EVALUATE MODELS

DEPLOY MODELS

MAKE PREDICTIONS

MONITOR PREDICTIONS

Enable ML at Scale:

Manage Data

Problem

○ Hardest part of ML is finding good features

○ Same features are often used by different models built by different teams

Solution

○ Centralized feature store for collecting and sharing features

○ Platform team curates core set of widely applicable features

○ Modellers contribute more features as part of ongoing model building

○ Meta-data for each feature to track ownership, how computed, where used, etc

○ Modellers select features by name & join key. Offline & online pipelines are
automatically deployed

Feature Store (aka Palette)

Enable ML at Scale:

Train Models

Large-scale distributed training (billions of samples)

○ Decision trees

○ Linear and logistic models

○ Unsupervised learning

○ Time series forecasting

○ Hyperparameter search for all model types

Speed and reliability

○ Fuse operators into single job for speed

○ Break operators into separate jobs to reliability

Distributed Training of Non-DL Models

○ Data-parallelism works best
when model is small enough to
fit on each GPU

○ Ring-allreduce is more efficient
than parameter servers for
averaging weights

○ Faster training and better GPU
utilization

○ Much simpler training scripts

○ More details at
http://eng.uber.com/horovod

Distributed Training of Deep Learning Models with Horovod

Enable ML at Scale:

Manage & Eval Models

Evaluate Models

Problem

○ It takes many iterations to produce a good model

○ Keeping track of how a model was built is important

○ Evaluating and comparing models is hard

With every trained model, we capture standard metadata and reports

○ Full model configuration, including train and test datasets

○ Training job metrics

○ Model accuracy metrics

○ Performance of model after deployment

Model Visualization - Regression Model

Model Visualization - Classification Model

Model Visualization - Feature Report

Model Visualization - Decision Tree

Enable ML at Scale:

Deployment & Serving

Prediction Service

○ Thrift service container for one or more models

○ Scale out in Docker on Mesos

○ Single or multi-tenant deployments

○ Connection management and batched / parallelized queries to Cassandra

○ Monitoring & alerting

Deployment

○ Model & DSL packaged as JAR file

○ One click deploy across DCs via standard Uber deployment infrastructure

○ Health checks and rollback

Online Prediction Service

Realtime Predict Service

Deployed ModelDeployed Model
Client

Service

Deployed Model

Model

Cassandra Feature StoreRouting
Infra

DSLModel Manager1

2

3
4

5

Online Prediction Service

Online Prediction Service

Typical p95 latency from client service

○ ~5ms when all features from client service

○ ~10ms when joining pre-computed features from Cassandra

Peak prediction volume across current online deployments

○ 1M+ QPS

Enable ML at Scale:

Monitor Models in Production

Monitor Predictions

Problem

○ Models trained and evaluated against
historical data

○ Need to ensure deployed model is
making good predictions going forward

Solution

○ Log predictions & join to actual
outcomes

○ Publish metrics feature and prediction
distributions over time

○ Dashboards and alerts

Enable ML at Scale:

System Architecture

 Management

Monitor

API

Python / Java

https://docs.google.com/file/d/1-LcZqSj9DBCDvmqma13uDbrcmP2p05Jl/preview

Accelerate ML

ML Platform Evolution

V1: Enable ML at Scale

○ End-to-end workflow

○ High scale training

○ High scale model serving

○ Feature Store

V2: Accelerate ML

○ PyML

○ Horovod

○ AutoTune

○ Manifold Model Viz

○ Realtime Model

Monitoring

Keys to High Velocity ML

○ Reduce friction at every step of complex, iterative workflow

○ End-to-end ownership by modeler - no handoffs

○ Bring the tools to the modeler

○ Simple, elegant APIs

○ Rich visual tools for understanding data and models

○ Measure time from idea to model in production

Accelerate ML:

PyML

PyML

○ Problem

○ Michelangelo initially targeted high scale use cases

○ Good for first wave of production use cases

○ But, not very easy for early prototyping and limited flexibility

○ Solution

○ Support regular Python for lower scale, easy to use and very flexible modeling

○ Import any libraries

○ Train any model

○ Implement serving interface with predict() method

○ Call API to package model artifacts and upload to Michelangelo

○ Deploy to production via API or Michelangelo UI

PyML

PyML - 1. Train and Test Model

PyML - 2. Save Model

PyML - 3. Implement Serving Interface

PyML - 4. Package and Upload Model

PyML - 5. See Model in Michelangelo UI

PyML - 6. Deploy and Test Model

PyML - Architecture

Standard Model PyML Model

PyML - Serving Architecture

Accelerate ML:

Horovod

Horovod - Intro

○ There are many ways to do data-parallel training.

○ Some are more confusing than others. UX varies greatly.

○ Our goals:

○ Infrastructure people deal with choosing servers, network gear, container

environment, default containers, and tuning distributed training

performance.

○ ML engineers focus on making great models that improve business using

deep learning frameworks that they love.

Horovod - Complex Parameter Server Setup

Image Source: TensorFlow
-- https://www.tensorflow.org/deploy/distributed

https://www.tensorflow.org/deploy/distributed

Horovod - Simple Horovod Setup
import tensorflow as tf
import horovod.tensorflow as hvd

Initialize Horovod
hvd.init()

Pin GPU to be used
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01)

Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

Add hook to broadcast variables from rank 0 to all other processes during initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]

Make training operation
train_op = opt.minimize(loss)

The MonitoredTrainingSession takes care of session initialization,
restoring from a checkpoint, saving to a checkpoint, and closing when done
or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir="/tmp/train_logs",
 config=config, hooks=hooks) as mon_sess:
 while not mon_sess.should_stop():
 # Perform synchronous training.
 mon_sess.run(train_op)

Initialize Horovod

Assign a GPU to each TensorFlow process

Wrap regular TensorFlow optimizer with
Horovod optimizer which takes care of
averaging gradients using ring-allreduce

Broadcast variables from the first process to
all other processes to ensure consistent
initialization

Accelerate ML:

Manifold Viz

Manifold Viz

Accelerate ML:

AutoTune

AutoTune

Key Lessons Learned

Key Lessons Learned

○ Let developers use the tools that they want

○ Data is the hardest part of ML and the most important piece to get right

○ It can take significant effort to make open source and commercial components

work well at scale.

○ Develop iteratively based on user feedback, with the long-term vision in mind

○ Real-time ML is challenging to get right

Thank you!
eng.uber.com/michelangelo

eng.uber.com/horovod
uber.com/careers

Proprietary and confidential © 2018 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized in any

form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without

permission in writing from Uber. This document is intended only for the use of the individual or entity to whom it is addressed and contains

information that is privileged, confidential or otherwise exempt from disclosure under applicable law. All recipients of this document are notified

that the information contained herein includes proprietary and confidential information of Uber, and recipient may not make use of, disseminate,

or in any way disclose this document or any of the enclosed information to any person other than employees of addressee to the extent

necessary for consultations with authorized personnel of Uber.

