
Headline

Suudhan Rangarajan (@suudhan)
Senior Software Engineer

Netflix Play API
Why we built an Evolutionary
Architecture

Headline

Suudhan Rangarajan (@suudhan)
Senior Software Engineer

Netflix Play API
Why we built an Evolutionary
Architecture

Previous Architecture Workflow

Sign-up

Content
Discovery

Playback

API Service

← Services hosted in AWS → Devices

Domain specific
Microservices

API Proxy
Service

Signup Workflow

← Services hosted in AWS → Devices

Signup API

Sign-up

Content
Discovery

Playback

Domain specific
Microservices

API Proxy
Service

API Service

Content Discovery Workflow

← Services hosted in AWS → Devices

Discovery
API

Sign-up

Content
Discovery

Playback

Domain specific
Microservices

API Proxy
Service

API Service

Playback Workflow

← Services hosted in AWS → Devices

Play API

Sign-up

Content
Discovery

Playback

Domain specific
Microservices

API Proxy
Service

API Service

Previous Architecture

← Services hosted in AWS → Devices

Signup API

Discovery
API

Play API

Sign-up

Content
Discovery

Playback

Domain specific
Microservices

API Proxy
Service

API Service

Identity

Type 1/2 Decisions

Evolvability

Identity

Type 1/2 Decisions

Evolvability

Start with WHY: Ask why your
service exists

Lead the Internet TV revolution to
entertain billions of people across the
world

P
Maximize customer engagement
from signup to streaming

P
Enable acquisition, discovery,
playback functionality 24/7

API Identity: Deliver Acquisition,
Discovery and Playback functions
with high availability

Single Responsibility Principle: Be wary
of multiple-identities rolled up into a
single service

One API Service

Signup API

Discovery
API

Play API

Signup API

Discovery
API

Play API

API Service Per
function

Previous Architecture Current Architecture

Lead the Internet TV revolution to
entertain billions of people across the
world

P
Maximize user engagement of
Netflix customer from signup to
streaming

P
Enable non-member, discovery,
playback functionality 24/7

P
Deliver Playback
Lifecycle 24/7

Decide best
playback
experience

Track events
to measure
playback
experience

Authorize
playback
experience

Play API

Devices

API Proxy
Service

Decide best
playback
experience

Track events
to measure
playback
experience

Authorize
playback
experience

Devices

API Proxy
Service

High Coupling,
Low Evolvability

Play API Identity: Orchestrate
Playback Lifecycle with stable
abstractions

Guiding Principle: We believe in a simple
singular identity for our services. The
identity relates to and complements the
identities of the company, organization,
team and its peer services

Identity

Type 1/2 Decisions

Evolvability

“Some decisions are consequential and irreversible or nearly
irreversible – one-way doors – and these decisions must be made
methodically, carefully, slowly, with great deliberation and
consultation [...] We can call these Type 1 decisions…”

Quote from Jeff Bezos

“...But most decisions aren’t like that – they are changeable,
reversible – they’re two-way doors. If you’ve made a suboptimal
Type 2 decision, you don’t have to live with the consequences for
that long [...] Type 2 decisions can and should be made quickly by
high judgment individuals or small groups.”

Quote from Jeff Bezos

Three Type 1 Decisions to Consider

Synchronous &
Asynchronous

Data ArchitectureAppropriate
Coupling

Two types of Shared Libraries

Play API Service

Utilities

cache

Metrics

Shared
Libraries with
common
functions

Client Libraries
used for
inter-service
communications

Client 1

Client 2

Client 3

“Thick” shared
libraries with 100s of
dependent libraries
(e.g. utilities jar)

Previous Architecture

1) Binary Coupling

Hundreds of
shared libraries
spanning services
across network
boundaries

Previous Architecture

Binary coupling => Distributed
Monolith

Utilities Utilities

Utilities

Service1 Service2

Service3

“The evils of too much coupling between
services are far worse than the problems
caused by code duplication”

- Sam Newman (Building
Microservices)

Play API Service

Playback Decision
Service

Playback
Decision
Client

Previous Architecture

Requests Per
Second of API
Service

Increase in
Latencies
from the API
Service

Execution of
Fallback via
Play Decision
Client

Clients with heavy Fallbacks

Play API Service

Playback Decision
Service

Playback
Decision
Client

Previous Architecture

2) Operational Coupling

“Operational Coupling” might be an
ok choice, if some services/teams are
not yet ready to own and operate a
highly available service.

Many of the client
libraries had the
potential to bring down
the API Service

Previous Architecture

Operational Coupling impacts
Availability

Play API Service

Play API Service

Playback Decisions
Serviceclient

Java Java
Previous Architecture

3) Language Coupling

Play API Service

client

REST over HTTP 1.1
● Unidirectional

(Request/ Response
type APIs)

Previous Architecture

Playback Decisions
Service

Jersey Framework

Communication Protocol

Requirements

Operationally “thin” Clients No or limited shared libraries

Auto-generated clients for
Polyglot support Bi-Directional Communication

● At Netflix, most use-cases were modelled as Request/Response
○ REST was a simple and easy way of communicating between services; so

choice of REST was more incidental rather than intentional
● Most of the services were not following RESTful principles.

○ The URL didn’t represent a unique resource, instead the parameters passed
in the call determined the response - effectively made them a RPC call

● So we were agnostic to REST vs RPC as long as it meets our requirements

REST vs RPC

Previous Architecture Current Architecture

Play API Service
Playback
Decisions

Playback
Authorize

Playback
Events

Playback
Decisions

Playback
Authorize

Playback
Events

1) Operationally Coupled Clients
2) High Binary Coupling
3) Only Java
4) Unidirectional communication

Play API Service

1) Minimal Operational Coupling
2) Limited Binary Coupling
3) Beyond Java
4) Beyond Request/ Response

gRPC/
HTTP2REST/

HTTP1

Consider “thin” auto-generated clients
with bi-directional communication and
minimize code reuse across service
boundaries

Type 1 Decision: Appropriate Coupling

Three Type 1 Decisions to Consider

Synchronous vs
Asynchronous

Data ArchitectureAppropriate
Coupling

PlayData getPlayData(string customerId, string titleId,
string deviceId){

CustomerInfo custInfo = getCustomerInfo(customerId);
DeviceInfo deviceInfo = getDeviceInfo(deviceId);
PlayData playdata = decidePlayData(custInfo,

deviceInfo, titleId);
return playdata;

}

Request Handler
Thread pool Client Thread pool

Typical Synchronous Architecture

Request Handler
Thread pool Client Thread pool

getPlayData

getCustomerInfo

decidePlayData

Return

One thread per request

Typical Synchronous Architecture

getDeviceInfo

Customer Service

Device Service

Play Data Decision
Service

Request Handler
Thread pool Client Thread pool

getPlayData

getCustomerInfo

decidePlayData

Return

One thread per request

Typical Synchronous Architecture

getDeviceInfo

Customer Service

Device Service

Play Data Decision
Service

Blocking Request Handler Blocking Client I/O

Request Handler
Thread pool Client Thread pool

getPlayData

getCustomerInfo

decidePlayData

Return

One thread per request

Typical Synchronous Architecture

getDeviceInfo

Blocking Request Handler Blocking Client I/O

Works for Simple
Request/Response

Works for Limited
Clients

Beyond Request/Response

One Request - One Response

Request Play-data for Title X
Receive Play-data for Title X

One Request - Stream Response

Request Play-data for Titles X,Y,Z
Receive Play-data for Title X
Receive Play-data for Title Y
Receive Play-data for Title Z

Stream Request - One Response

Request Play-data for Title X
Request Play-data for Title Y
Request Play-data for Title Z
Receive Play-data for Titles X,Y,Z

Stream Request - Stream Response

Request Play-data for Title X
Request Play-data for Title Y
Receive Play-data for Title X
Get Play-data for Title Z
Receive Play-data for Title Y
Receive Play-data for Title Z

Request/Response
Event Loop

Outgoing Event Loop
per client

Worker Threads

Asynchronous Architecture

PlayData getPlayData(string customerId, string titleId,
string deviceId){

Zip(getCustomerInfo(customerId),
 getDeviceInfo(deviceId),
 (custInfo, deviceInfo) ->

return decidePlayData(custInfo, deviceInfo,
titleId)
);

}

Request/Response
Event Loop

Outgoing Event Loop
per clientWorkflow spans many

worker threads

Asynchronous Architecture

Customer Service

Device Service

PlayData Service

setup

Request/Response
Event Loop

Outgoing Event Loop
per clientWorkflow spans many

worker threads

Asynchronous Architecture

Customer Service

Device Service

PlayData Service

getCustomerInfo

Request/Response
Event Loop

Outgoing Event Loop
per clientWorkflow spans many

worker threads

Asynchronous Architecture

Customer Service

Device Service

PlayData Service

getDeviceInfo

Request/Response
Event Loop

Outgoing Event Loop
per clientWorkflow spans many

worker threads

Asynchronous Architecture

Customer Service

Device Service

PlayData Service

zip

Request/Response
Event Loop

Outgoing Event Loop
per clientWorkflow spans many

worker threads

Asynchronous Architecture

Customer Service

Device Service

PlayData Service

decidePlayData

● All context is passed as messages from one processing unit to
another.

● If we need to follow and reason about a request, we need to build
tools to capture and reassemble the order of execution units

● None of the calls can block

Workflow spans multiple threads

Request/Response
Event Loop

Outgoing Event Loop
per client

Worker Threads

Asynchronous Architecture

Asynchronous Request Handler Non-Blocking I/O

Synchrony

Ask: Do you really have a need
beyond Request/Response?

Network Event Loop

Outgoing Event Loop
per client

Dedicated thread

Synchronous Execution + Asynchronous I/O

Blocking Request Handler Non-Blocking I/O
Current Architecture

getPlayData

getCustomerInfo

decidePlayData

Return

getDeviceInfo

If most of your APIs fit the
Request/Response pattern, consider a
synchronous request handler, with
nonblocking I/O

Type 1 Decision: Synchronous vs
Asynchronous

Three Type 1 Decisions to Consider

Synchronous
vs
Asynchronous

Data ArchitectureAppropriate
Coupling

Without an intentional Data
Architecture, Data becomes its
own monolith

Previous Architecture

What a Data Monolith looks like

Data Source

Data Source

Data Source

Service 1

Service 2

Service 3

Service 4

4 GB

1 GB

2 GB

400 MB

600 MB

API Service

← Multiple Data sources loaded in memory →

←
 M

em
or

y
Lo

ad
 →

Previous Architecture

What a Data Monolith looks like

4 GB

1 GB

2 GB

400 MB
600 MB

API Service

Very small percentage of data
actually accessed

Previous Architecture

What a Data Monolith looks like

API Service

Each Data Source models gets
coupled across classes and libraries

Previous Architecture

What a Data Monolith looks like

API Service

Unpredictable Performance
Characteristics

Data
Update

CPU Utilization

Previous Architecture

What a Data Monolith looks like

What a Data Monolith looks like

API Service

Potential to bring down the service

Data
Update

Netflix was
down

Previous Architecture

"All problems in computer science can be
solved by another level of indirection."

David Wheeler
(World’s first Comp Sci PhD)

Current Architecture

Data Source

Data Source

Data Source

Data Source

Data Source

Data
Loader

Data
ServicePlay API Service Data

Store

Materialized View

Current Architecture

Data Source

Data Source

Data Source

Data Source

Data Source

Data
Loader

Data
Service

Uses only the data
it needs

Predictable
Operational
Characteristics

Reduced
Dependency chain

Data
StorePlay API Service

Materialized View

Isolate Data from the Service. At the
very least, ensure that data sources
are accessed via a layer of
abstraction, so that it leaves room for
extension later

Type 1 Decision: Data Architecture

Three Type 1 Decisions to Consider

Synchrony Data ArchitectureAppropriate
Coupling

For Type 2 decisions, choose a path,
experiment and iterate

Guiding Principle: Identify your Type 1
and Type 2 decisions; Spend 80% of your
time debating and aligning on Type 1
Decisions

Identity

Type 1/2 Decisions

Evolvability

An Evolutionary Architecture
supports guided and incremental
change as first principle among
multiple dimensions

- ThoughtWorks

Choosing a microservices architecture
with appropriate coupling allows us to
evolve across multiple dimensions

How evolvable are the Type 1 decisions

Change Play API Current
Architecture

Previous
Architecture

Asynchronous?

Polyglot services?

Bidirectional APIs?

Additional Data
Sources?

Known
Unknowns

Potential Type 1 decisions in the
future?

Change Play API Current
Architecture

Previous
Architecture

Containers?

Serverless?

?

?

And we fully expect that there will
be Unknown Unknowns

As we evolve, how to ensure we are
not breaking our original goals?

Use Fitness Functions to guide
change

High Availability Low Latency

Simplicity

Reliability

High
Throughput

Observability Developer
Productivity

Continuous
Integration

Scalable

Evolvability

High Availability Low Latency

Simplicity

Reliability

High
Throughput

Observability Developer
Productivity

Continuous
Integration

Scalable

Evolvability
1

2

3

4

Why Simplicity over Reliability?

Increase in
Operational
Complexity Reliable

Fallback when
service is
down

Why Scalability over Throughput?

New
instances
were added

Increase in
Errors due to
cache
warming

Why Observability over Latency?

Decrease in latency
by using a fully
async executor

Cost of Async: Loss
in Observability

Four 9s of availability

Thin
Clients

P99
latency Resilience

to failures

Merge to
Deploy
Time

1

2

3

Guiding Principle: Define Fitness
functions to act as your guide for
architectural evolution

Previous Architecture Current Architecture

Operational Coupling

Binary Coupling

Only Java

Synchronous
communication

Data Monolith

Operational Isolation

No Binary Coupling

Beyond Java

Asynchronous
communication

Explicit Data
Architecture

Guided Fitness
Functions

Multiple Identities
Singular Identities

● No incidents in a
year

● 4.5 deployments
per week

● Just two rollbacks!

Identity

Type 1/2 Decisions

Evolvability

Build a Evolutionary Architecture

