3 things | wish | knew when |
started designing languages

About “poor me”

Declarative
languages

Systems
programming

About the real me

Flunked trig, flunked chem, never took calculus or physics.

Graduated HS with a 2.8 GPA

Bachelor of Arts in English Literature

3 years as an editor; 2 as a DBA; 5 as a software engineer before grad school

| am not nor was | ever a PL researcher

This talk is about me (designing a language)

1. Misgivings: how | almost never began
2. Lucky guesses: things | got right
3. Discoveries: stuff | learned along the way

Prelude: misapprehensions and misgivings

how we FUD ourselves out of language design

An audacious new language

should look unique!

1: The Look

2PC

{request, Xact, Client} ->
if (valid(request)) then
multicast(Members, {prepare, Xact, Myaddress});
end if

{prepare, Xact, Coordinator} ->

if (exec(Xact)) then

send(Coordinator, {vote, Xact, y, Myaddress});
else

send(Coordinator, {vote, Xact, n, Myaddress});
end if

{vote, Xact, Vote, Agent} ->
// voting...
if (Vote == n) then
send(Members, {status, Xact, abort});
else
// local state, etc.
if () then

end
end if

{status, Xact, Status, Coordinator} ->
if (Status == abort) then
abort(Xact);
else
commit(Xact);
end if

{ack, Xact, Agent} ->

some bicyclist[sic] @ y
b @palvaro 2. the heart rears wings bold and ... @
ti @palvaro ¥
Replying to @palvaro @cmeik
P: yau're nater alvarn? last year carl hewitt honored me by walking

1: The Need

Me:
P: yq
distr
Me:

5:24 PM

1 Retwe

A jerfon Apr 8, 2011 [-]

I get where you are coming from, and it's a good plan, as long as the plan is to eventually fully detach from Ruby. Being even two or three times as fast as Ruby, which seems to be
an optimistic interpretation of JRuby's performance, is still starting from a terrible position in so many ways.

I don't get the idea that some people seem to have that performance doesn't matter for distributed systems, when the truth is the exact opposite. Desktops and even cell phones, we
see a great deal of sloppiness around performance, because it doesn't really matter that much. Small servers or small clusters, we still say throw more hardware at it and just hack
some stuff together for clustering. But when you're serious about distributed systems is also when you are counting every one of something; maybe disk hits, maybe CPU cycles,
maybe bytes of RAM, but there is something you are obsessing over. And maybe you're obsessing over more than one of these at once, all with an intensity that would credit an Atari
2600 programmer. (Facebook apparently published the specs for their machines today. Tell me they aren't too concerned about performance.) I'm not sure leaving performance for
later is a good idea, they may well iterate their way into a cool abstraction that will never perform. Designing a distributed system abstraction without worrying about performance
strikes me as about as sensible as designing a new 3D framework without worrying about performance... not necessarily a fatal flaw but I sure hope you have a good plan.

L

i

| 11:45 PM - 27 Apr 2073 |

h a library?

tj the heart rears wings bold and ... @

@palvaro

Tweet your reply A chewzerita 5 months ago [-]

(roughly transcribed) OH: "in racket, How is this different from elixir?
some bicyclist[sic] @ @palvaro - 16 Sep 2016 evel'ythlng IS parentheSlS. what is the thlng n
Replying to @palvaro @cmeik your language that is everything and that |
P: *pointing derisively* HAHAHAHAHAHAHAHA! don nt buyr)

) 5 T Q 9 il
11:12 AM - 8 Apr 2015

some bicyclist[sic] @ @palvaro - 16 Sep 2016

(HPTS 2009) |

D A CoffeeDregs on Apr 8, 2011 [-]

I like it! umm... but what the hell is it? I STFA (skimmed-the-f*ing-article) and don't know what's going on here. Quick! What does this mean?

The Impact

1

Lucky guesses: things | got right

Lucky guess 1.

context context context context context context
context context context context context context
context context context context context context
context context context context context context
context context context context context context
context context context context context context
context context context context context context
context context context context context context

Every language is a DSL

Thy firmness makes my circle just

A domain 'l ,\

More lucky guesses: a damn problematic domain

P ail success) = F (

perceived crisis
perceived pain of adoption

Hiding and illuminating

What is damn hard about this domain?

Program correctness

What is damn hard about this domain?

Program correctness Debugging

What is damn hard about this domain?

Program correctness Debugging

it it

What is damn hard about this domain?

Program correctness Debugging

Maintenance and extensibility

What is damn hard about this domain?

Program correctness

Maintenance and extensibility

SCRUM FRAMEWORK

Debugging

Heterogeneity and portability

R- &.

The Task Develop C t d k Laui hth ppl t
The Applicatio
fo th ppl t

Rearranging the deckchairs...

Program correctness Debugging

t northern coastal scrub @
SCRL 2

@palvaro
C[if the next decade "belongs to containers," | D
fear we might not be thinking big enough. e

10:36 AM - 20 Oct 2015

Why so damn hard?

Behaviors

Qutcomes
Program E

N

The right language would focus our attention on

How data flows through the system;
How it is allowed to change over time;

Where and when we can control how it changes and when we can't.

Everything else, arguably, is a distraction

i L D

Control flow

Time

context context context context context context context
context context context context context context context
context context context context context context context
context context context context context context context
context context context context context context context
context context context context context context context
context context context context context context context
context context context context context context context
context context context context context context context

State representation

Thy firmness makes my circle just

An opinion

/Va ’/\,l

A domain

Many moons passed

so I'm sitting in the bath reading lamport, like I do most nights. and it occurs to me... statement structure:
head(Argl, Arg2, [...]) :-
op1{
are we thinking about this wrong, trying to figure out how to map the doughface language clause1(ArgN, [...]1),
onto an overwriting implementation? it occurs to me that we should have this: Argh > X;
clause2(ArgN, [...]),
1. all facts (instantaneous events) are stored (almost) eternally by appending to a log. by
this log is timestamp order, obviously, but we could imagine indexes into it.
2. all a program does is define what is true when, based on what is already true then. a Op2 {
predicate p is true at a given time N if it was a fact given at that time (cheap to look
up since our log is sorted), or if it can be proven that a tuple has carried over from a 3

previous time (i.e., if (\exists a tuple A \in p@M s.t. M < N) and (~\exists a tuple B \in
del_p@0 s.t. M < O < N).

backing up. what are reasonable state primitives for a programming language?
"encapsulation [...] appears antithetical to declarativeness.

talk about the data: name it, talk about how it changes.

This is all very well and good in a datalog program, which is evaluated over a static set of
ground facts until there are no more conclusions to be drawn. But when we introduce the
notions of time and communication, from pure logic to asynchronous distributed systems,
we feel uncomfortable (understandably) with the idea of rules firing in no particular order.

Inspiration

Descriptive complexity (Immerman’99)

In the beginning, there were two measures of computational complexity: time and
space. From an engineering standpoint, these were very natural measures, quan-
tifying the amount of physical resources needed to perform a computation. From
a mathematical viewpoint, time and space were somewhat less satisfying, since
neither appeared to be tied to the inherent mathematical complexity of the compu-
tational problem.

In 1974, Ron Fagin changed this. He showed that the complexity class NP —
those problems computable in nondeterministic polynomial time — is exactly the
set of problems describable in second-order existential logic. This was a remark-
able insight, for it demonstrated that the computational complexity of a problem
can be understood as the richness of a language needed to specify the problem.
Time and space are not model-dependent engineering concepts, they are more fun-
damental.

Descriptive complexity (Immerman’99)

Drcor = (R)(EYY)(3BY)(V2)|(R(z) VY (2) V B() A (Vy)(E(z,y) >

~(R(z) AR@) A =(Y(2) AY(3)) A ~(B(z) A B®)))]

Osar = (35)(Vz)(3y)((P(z,y) AS(y) Vv (N(z,y) A—~S5(y))) -

Descriptive complexity (Immerman’99

core; complete Arithmetic Hierarchy FO(N) T. complete
Halt . 5) - Halt
co-re. FOVY(N) re. FO3(N)
Recursive
Primitive Recursive
o EXPTIME
SO(LFP) sO[2""]
QSAT PSPACE complete
PSPACE
Fo[2"°"] FO(PFP) SO(TC) SO[n°®)

PTIME Hierarchy SO

NP complete
SAT

co-NP complete
SAT

NP SO3

NP N co-NP

«*"*«. P complete

FO[n°")]

'."Hul:l!»“_ P
FO(LFP) SO(Horn) Sal
FO[(log n)°™M] L Y NC
FO[log n feasible” AC!
FO(CFL) SAC!

FOTC) SO(Krom);~2SAT NL comp._—~ NL
FODTC) T7—2COLOR L ecomp —%~ L

FO(REGULAR) NC!

FO(COUNT)) ThC®
FO { LOGTIME Hierarchy % AC?

Descriptive complexity (Immerman’99)

Although few programmers consider their work in this way, a computer pro-
gram is a completely precise description of a mapping from inputs to outputs. In
this book we follow database terminology and call such a map a query from input
structures to output structures. Typically a program describes a precise sequence of
steps that compute a given query. However, we may choose to describe the query
in some other precise way. For example, we may describe queries in variants of
first- and second-order mathematical logic.

Fagin’s Theorem gave the first such connection. Using first-order languages,
this approach, commonly called descriptive complexity, demonstrated that virtu-
ally all measures of complexity can be mirrored in logic. Furthermore, as we will
see, the most important classes have especially elegant and clean descriptive char-
acterizations.

Queries made a neat lens...

create view response as
select client, server, code, document
from request r, page p
where r.server = p.server
and r.URI = p.URI;

Maybe languages are really lenses

fragments

Conjunctive queries

O 11 X LFP

fragments

SQL

70O Tr X

LFP

fragments

O 11 X LFP

Datalog

Or maybe they are lassos

Conjunctive queries

SQL

1O Tr X

LFP

Datalog

context context context context context context
context context context context context context
context context context context context context
context context context context context context
context context context context context context
context context context context context context
context context context context context context
context context context context context context

Datacentrism

knowledge(“details”)

Datacentrism

knowledge(host1, “details”)

/

Contexualized by location (space)

Datalog cannot express

Mutable state

Uncertainty

Datacentrism

knowledge(host1, “details”, 27)

/

Contexualized by relative order (time)

Datacentrism

register(host1, “current value”, 27)

Datacentrism

kvs(host1, key, “current value”, 27)

Or maybe they are lassos

710 T X LFP

Datalog

Or maybe they are lassos

“Statelog”

7T 0O T X LFP

+1

Dedalus can express it all. but...

Dedalus

7T 0O T X LFP

+1 ND choice

Paxos

Dedalus al

say; requil
2PC

:- begin(Coord, Xact), agent(Coord, Age]
:- cancommit(Agent, Coord, Xact),

cancommit(Agent, Coord, Xact)@async
vote_msg(Coord, Agent, Xact, "Y")@async
vote(C,A,X,S) :- vote_msg(C,A,X,S);
timer_svc(A, X, 4) :- cancommit(A, _, X);

// the coordinator is the distinguished node that is not an agent...
abort(A, X)@next :- timeout(A, X), notin coordinator(A, A), notin precommit|

authorized(C, X) :- vote_msg(C, _, X, "Y"), notin missing_vote(C, X), notin|
= authorized(C, X), agent(C, A);
X), prepared(A, C, X,
X), prepared(A, _, X,
X), prepared(A, C, X,

precommit (A, C, X)@async
ack(C, A, X)@async :- precommit(A, C,
timer_cancel(A, X) :- precommit(A, _,
timer_svc(A, X, 4) :- precommit(A, C,

oy
)

//commit(A, X)@next
commit(A, X) :- timeout(A, X), precommitted(A, C, X),

:— timeout(A, X), precommitted(A, C, X), notin abort(A,
notin abort(A, X);

precommitted(A, C, X) :— precommit(A, C, X);
precommitted(A, C, X)@next :- precommitted(A, C, X);

abort(C, X)enext
commit(C, X)@next

i- vote(C,
- ack(C,

X, "N)G
_, X), notin missing_ack(C, X), notin abort(C,

:- agent(C, A), running(C, X), notin ack(C, A, X);
:- agent(C, A), running(C, X), notin vote(C, A, X, "Y");

missing_ack(C, X)
missing_vote(C, X)

prepared(A, C, X, "Y") :- cancommit(A,C,X), can(A,X);

prepared(A, C, X, Y)@next :- prepared(A,C,X,Y);

timer_svc(C, X, 5)
abort(C, X)@next

= begin(C, X);
:— timeout(C, X), coordinator(C, C), missing_ack(C, X), no|

nodes(A, N, I)@next :- nodes(A, N, I);
seed(A, S)@next :- seed(A, S), notin update_seed(A);
seed(A, S+C)@next :- seed(A, S), update_seed(A), agent_cnt(A, C);

prepare(B, A, S, M)@async :- proposal(A, M), seed(A, S), nodes(A, B, _);
update_seed(A) :- proposal(A, _);

redo(A, M) :- timeout(A, M), notin accepted(A, _, M);

prepare(B, A, S, M)@async :- redo(A, M), seed(A, S), nodes(A, B, _);
timer_svc(A,M,3) :- redo(A, M);

update_seed(A) :- redo(A, M);

response_log(C, A, S, 0, Os) :- prepare_response(C, A, S, 0, 0s);
response_log(C, A, S, 0, M)@next :- response_log(C, A, S, 0, M);

// workaround for the fact that c4 can't count strings!
//response_cnt(C, S, count<A>) :- response_log(C, A, S, 0, 0s);
response_cnt(C, S, count<I>) :- response_log(C, A, S, 0, 0s), nodes(C, A, I);
best(C, S, max<0s>) :- response_log(C, A, S, 0, 0s);
what(C, I) :- nodes(C, _, I);
//agent_cnt(C, count<I>) :- nodes(C, _, I);
agent_cnt(C, count<I>) :- what(C, I);
accept(A, S, O)@async :- agent_cnt(C, Cntl), response_cnt(C, S, Cnt2),

response_log(C, _, S, 0, O0s), best(C, S, Os), nodes(C, A, _), Os != 1, Cnt2 > Cntl / 2;
:— agent_cnt(C, Cntl), response_cnt(C, S, Cnt2), response_log(C, _, S, 0, Os),

best(C, S, 0s), my_proposal(C, P), nodes(C, A, _), Os 1, Cnt2 > Cntl / 2;

accept(A, S, P)@async

// acceptor

dominated(A, S) :- prepare(A, _, S, _), prepare_log(A, S2, _), S2 > S;

can_respond(A, C, S, M) :- prepare(A, C, S, M), notin dominated(A, S);

prepare_response(C, A, S, 0, Os)@async :- can_respond(A, C, S, M), accepted(A, Os, 0), highest_accepted(A, 0s);
prepare_response(C, A, S, "anything", 1)@async :- can_respond(A, C, S, M), notin accepted(A, _, _);

highest_accepted(A, max<S>)
accepted(A, S, M)

1 accepted(A, S, _);
:- accept(A, S, M);

accepted(A, S, M)@next :- accepted(A, S, M);
prepare_log(A, S, M) :- prepare(A, _, S, M);
prepare_log(A, S, M)@next :- prepare_log(A, S, M);

on’'t want to

er not use
3PC

n;
agent_cnt(A, C);

d(A, S), nodes(A, B, _);

L, M
S), nodes(A, B, _);

(C, A, s, 0, 0s);
(c, A, S, 0, M);

trings!
, A S, 0, 0s);
A, S, 0, 0s), nodes(C, A, I);

0s);

ponse_cnt(C, S, Cnt2),
ponse_cnt(C, S, Cnt2),

response_log(C, _, S, 0, 0s), best(C, S, 0s), nodes(C,
response_log(C, _, S, 0, 0s), best(C, S, 0s), my_propof

| tog(a, s2, 1), s2>s;
notin dominated(A, S);

spond(A, C, S, M), accepted(A, Os, 0), highest_accepted(A, 0s);
- can_respond(A, C, S, M), notin accepted(A, _, _);

:= commit(C, X), agent(C, A), notin abort(C, A);
= abort(C, X), agent(C, A);

commit (A, X)@async
abort(A, X)@async

= proposal(A, P);
Planext :- mv 0ronosal(A, P):

ny_proposal(A, P)
Qv 0r000sal(h

Waiting requires counting

Counting requires waiting

(Joe Hellerstein)

Waiting requires counting

Nonmontonicity required to express coordination

Counting requires waiting

Coordination required to tolerate nonmonotonicity

Or maybe they are lassos

CALM Dedalus

710 T X LFP

+1 ND choice

Pop descriptive complexity

Dedalus Halt

NP

Coordination-free programs
P
“Truly monotone”
dedalus
Semipositive
Dedalus “Embarrassingly]
parallel”

Dedalus0

Datalog

Discoveries: stuff | learned along the way

Languages and the design process

context context context context context context context context context context

context context context context context context context context context context

context context context context context context context context context context

context context context context context context context context context context

\ context context context context context context context context context context

context context context context context context context context context context
context context context

String 0 4
Nai/
2 /

o
et

Languages and the design process

Subject

Languages and the design process

a2

S ﬁ’:

Distributed systems

Discoveries: stuff | learned along the way

The look

Discoveries: stuff | learned along the way

Freloolk it's about the fit

Discoveries: stuff | learned along the way

Freloolk it's about the fit
The need

Discoveries: stuff | learned along the way

Freloolk it's about the fit
Haeneee it's about our need

Discoveries: stuff | learned along the way

Freloolk it's about the fit
Haeneee it's about our need

The impact well....

DepaLus: Datalog in Time and Space

Poter Alvaro: William R. Marczak: Neil
sah e Davi e Maseot Sesrs

“Universityof Californi, Berieley*Portand State Tiversicy

ABSTRACT sling angusgs v b promots o e sompac o !
) T
ey st -

v maienance. To ddiion, a many of hes Jnguages he

o e prvicos angaages o o e
P D byt TS, T il e e e o
it e ‘ g 2.2, 110
oo embiuides of e
e i o et g (csaes of Sl sy 11 4 e e for i
Weinimke s

i negaion over e v ¢ facions.
Skn, O "W show b

o s e
o Datslog prciass.

1. INTRODUCTION

s e ot propres o e g ¢ el
a0t f fery ppUopis g rnnig eeviss s e,
s monolri rescnies it et ver s, s et
culion

Wi vty ofarts, cludng Setworking 120, s s

s There.

g en 2
n Sacdon 3, v tampors ey snd sty poperies
of Doy n o 2, dscre sl el it el

T et s Bm gl

P

Lineage-driven Fault Injection

Peter Avaro. Joshua Rosen
G oaoey

Joseph M. Holerstein

ey U Geraey
palvaro@cs borkeleyedu fosenvile@gmallcom hellrstein@cs. berkeloyedu

ABSTRACT

e pom—r—

SETpTemenmae iy S0
ot

e

— e oo i ey o o

T e i e

o e o ok, e . o

Keyvords T e prer]

1. INTRODUCTION

ferrert T

el
et o

ot e, o e e o g

e e e o et n
e o e s et

Growing a protoeol

Kamala Ramasubramaian', Kathryn Dablgrea’,
[

shes?

Asha Karim, Sanjana Maiya’, Sarah Borland',
Peter Alvaro!

"Universiy of Califoria, Santa Cruz.
*Blastc

{kranasub, kndaxlgr, akaris,

aiya, sborland, palvarc)eucsc.sdy

boszdelsstic.co

Abstract
o st ol e e 1
y

B T eep———
ol ey

howeve,will qickly sdenly i
iy, v ik o i

e i e ko v aplns s

Furter.
o, v e feime o sy, ool s .

oy (5., weaing tmeoutparmere) o ¢ o

e e

Vel e
changes n pracpl

hecuion whahle e thn merly elain g
i e advcae ot comamudy d s

scally Py Bk
Sotvae engosriog bt pracicesgovide s wih 3

iy e ed b, s s e e

ol i oy e g Drven
Pt jction LDFD s

e coss, . s
o o T o o T e s 3 i 2 gt i 0 s 0 i
Consieocy due elcion fo sy w e g by 4
o .
ur Bes prac.
st
cur mpleneraion. vk comms

dsined sy, by

gt e

i ol he shl” 50 sy e g

v the fce o
i s snd ek et Consoqenty,

Consistency Analysis in Bloom: a CALM and Collected
Approach

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, Willam R. Marczak

hellrsiin. bercleyedu
e versy 3 Caliora. oy

ABSTRACT

ity sy s el As s e

e s s o i CALN pricpie, weh o

T gt e
R i T
e

haicee i

s

e g sy e B s pes

ot v i e o, e eyl i

"

2t o e

1. INTRODUCTION

G prograrny e e oy st e e
ot
i e A" s pyel
e
s e s o), iy oo
B e S
(cALM)

Fixed It For You

Protocol Repair Usi

Abstract

ing Lineage Graphs

Poor lucky me

FOR SALE

Sovped-vp Dotoloog

Rons oreot
| poblicotion (OTS0)

o A SRS BTN WAL =SS e FRe sEm R tETar L L am

BTW: Where's the lie?

