©Joyent

Is it time to rewrite the operating
system in Rust?

Bryan Cantrill
CTO

bryan@joyent.com
@bcantrill

mailto:rod@joyent.com?subject=

Spoiler alert ©Joyent

Betteridge's law of headlines

From Wikipedia, the free encyclopedia

Betteridge's law of headlines is an adage that states: "Any headline that ends in a question mark can be answered by
the word no." It is named after lan Betteridge, a British technology journalist who wrote about it in 2009,[)2] although
the principle is much older. As with similar "laws" (e.g., Murphy's law), it is intended to be humorous rather than the

literal truth.!

The maxim has been cited by other names since as early as 1991, when a published compilation of Murphy's Law
variants called it "Davis's law" [/ a name that also crops up online, without any explanation of who Davis was.[58] |t
has also been called just the "journalistic principle",[”] and in 2007 was referred to in commentary as "an old truism
among journalists". (8]

What even is the operating system? wJoyent

* The operating system is harder to define than it might seem...

* For every definition, it can be easy to come up with exceptions

* At minimum: the operating system is the program that abstracts
hardware to allow execution of other programs

* The operating system defines the liveness of the machine:
without it, no program can run

* The operating system software that runs with the highest level
of architectural privilege is the operating system kernel

* ...but the kernel is not the entire operating system!

Operating system implementation history wJoyent

 Historically, operating systems — néee “executives” — were
written entirely in assembly

» Starting with the Burroughs B5000 MCP in 1961, operating
systems started to be written in higher level languages...

* |In 1964, when Project MAC at MIT sought to build a successor
to their Compatible Timesharing System (CTSS), they selected
the language (PL/l) before writing any code (!)

» But PL/I had no functioning compiler — and wouldn’t until 1966

PL/l in Multics ©Joyent

* The decision to use PL/I in Multics was seen by its creators as a
great strength, even when reflecting back in 1971

As with the earlier topics, the 1implications of this
work with PL/I should be felt far beyond the Multies
system. Most implementers, when faced with the eco-
nomic uncertainties of a higher-level language, have
chosen machine language for their central operating
systems. The experience of PL/I in Multies when added
to the expanding collection of experience elsewherest
should help reduce the uncertzainty.

Source: “Multics: The first seven years,” Corbato et al.

* ...but that the compiler was unavailable for so long (and when
was available, performed poorly) was a nearly-fatal weakness

The birth of Unix wJoyent

» Bell Labs pulled out of the Multics project in 1969

* Aresearcher formerly on the Multics effort, Ken Thompson,
implemented a new operating system for the PDP-7

* The system was later ported to the PDP-11/20, where it was
named Unix — a play on “eunuchs” and a contrast to the top-
down complexity of Multics

* Unix was implemented entirely in assembly!

Unix and high-level languages wJoyent

* The interpreted language B (a BCPL derivative), was present in
Unix, but only used for auxiliary functionality, e.g. the assembler
and an early version of dc(1)

* Some of the B that was in use in Unix was replaced with
assembly for reasons of performance!

* Dennis Ritchie and Thompson developed a B-inspired language
focused on better abstracting the machine, naming it “C”

» Perhaps contrary to myth, C and Unix were not born at the
same instant — they are siblings, not twins!

The C revolution wJoyent

* C is rightfully called “portable assembly”: it is designed to
closely match the abstraction of the machine itself

» (C features memory addressability at its core
» Unlike PL/I, C grew as concrete needs arose

* e.dg., C organically adopted important facilities like macro
processing through the C preprocessor

» Standardization efforts came late and were contentious: C
remains infamous for its undefined behaviors

Operating systems in the 1980s wJoyent

* As the minimal abstraction above the machine, C — despite its
blemishes — proved to be an excellent fit for operating systems
implementation

* With few exceptions, operating systems — Unix or otherwise —
were implemented in C throughout the 1980s

* Other systems existed as research systems, but struggled to
offer comparable performance to C-based systems

Operating systems in the 1990s wJoyent

* |In the 1990s, object oriented programming came into vogue,
with languages like C++ and Java

* By the mid-1990s, C-based systems were thought to be relics

* ...but the systems putatively replacing them were rewrites —
and suffered from rampant Second System Syndrome

* They were infamously late (e.g. Apple’s Copland), infamously
slow (e.g. Sun’s Spring), or both (Taligent’s Pink)

» Java-based operating systems like Sun’s JavaOS fared no
better; hard to interact with hardware without unsigned types!

Operating systems in the 2000s wJoyent

» With the arrival of Linux, Unix enjoyed a resurgence — and
C-based operating systems became deeply entrenched

* With only a few exceptions (e.g., Haiku), serious attempts at
C++-based kernels withered

* At the same time, non-Java/non-C++ languages blossomed:
first Ruby, and then Python and JavaScript

* These languages were focused on ease of development rather
than performance — and there appears to be no serious effort
to implement an operating system in any of these

Systems software in the 2010s wJoyent

» Systems programmers began pining for something different: the
performance of C, but with more powerful constructs as enjoyed
in other languages

» High-performance JavaScript runtimes allowed for a surprising
use in node.js — but otherwise left much to be desired

* Bell Labs refugees at Google developed Go, which solves some
problems, but with many idiosyncrasies

» Go, JavaScript and others are garbage collected, making
interacting with C either impossible or excruciatingly slow

Rust?

Joyent

Rust Is a systems software programming language designed
around safety, parallelism, and speed

Rust has a novel system of ownership, whereby it can statically
determine when a memory object is no longer in use

This allows for the power of a garbage-collected language, but
with the performance of manual memory management

This is important because — unlike C — Rust is highly
composable, allowing for more sophisticated (and higher

performing!) primitives

Rust performance (my experience) ©Joyent

16 T T T ,
e C-bzsed statemap (AVL BST, gec 7.5.0,-02) —
m C-based stateman 1A(JL BST. clang 6.0.1,-03) —
,//‘”’M A Rust-based statemap (BTreeSet + HashMap] ———
~w Rusti-based statemap (ETreeSet+ BTreeMap)
"\
14 — / —
- .
127
@ 'l
c
o
§ /
.é- 1 0 —
.é. P Papy)\ L R
é NI T Mo A D
8 / =
6 —
4 1 1 |

™ 2M 3M 4M
Number cf rectancles

Source: http://dtrace.org/blogs/bmc/2018/09/28/the-relative-performance-of-c-and-rust/

Rust: Beyond ownership wJoyent

* Rust has a number of other features that make it highly
compelling for systems software implementation:

» Algebraic types allow robust, concise error handling
* Hygienic macros allow for safe syntax extensions

* Foreign function interface allows for full-duplex integration
with C without sacrificing performance

* “unsafe” keyword allows for some safety guarantees to be
surgically overruled (though with obvious peril)

 Also: terrific community, thriving ecosystem, etc.

Operating systems in Rust? wJoyent

* |f the history of operating systems implementation teaches us
anything, it’s that runtime characteristics trump development
challenges!

» Structured languages (broadly) replaced assembly because
they performed as well

* Viz., every operating system retains some assembly for reasons
of performance!

* With its focus on performance and zero-cost abstractions, Rust
does represent a real, new candidate programming language
for operating systems implementation

Operating systems in Rust: A first attempt wJoyent

* First attempt at an operating system kernel in Rust seems to be
Alex Light’s Reenix, ca. 2015: a re-implementation of a teaching
operating system in Rust as an undergrad thesis

* Biggest challenge in Reenix was that Rust forbids an application
from handling allocation failure

* The addition of a global allocator APl has improved this in that
now a C-based system can at least handle pressure...

* ...but dealing with memory allocation failure is still very much an
unsettled area for Rust (see Rust RFC 2116)

Operating systems in Rust since 2015 wJoyent

» Since Reenix’s first efforts, there have been quite a few small
systems in Rust, e.g.: Redox, Tifflin, Tock, intermezzQOS,
RustOS/QuiltOS, Rux, and Philipp Oppermann’s Blog OS

» Some of these are teaching systems (intermezzQOS, Blog OS),
some are unikernels (QuiltOS) and/or targeted at loT (Tock)

* These systems are all de novo, which represents its own
challenges, e.g. forsaking binary compatibility with Linux and
fighting Second System Syndrome

Operating systems in Rust: The challenges + Jogent

* While Rust’s advantages are themselves clear, it’s less clear
what the advantage is when replacing otherwise working code

* For in-kernel code in particular, the safety argument for Rust
carries less weight: in-kernel C tends to be de facto safe

* Rust does, however, presents new challenges for kernel
development, esp. with respect to multiply-owned structures

* An OS kernel — despite its historic appeal and superficial fit for
Rust — may represent more challenge than its worth

» But what of hybrid approaches?

Hybrid approach I: Rust in-kernel components @Joyent

* One appeal of Rust is its ability to interoperate with C

* One hybrid approach to explore would be to retain a
C-/assembly-based kernel while allowing for Rust-based
in-kernel components like device drivers and filesystems

* This would allow for an incremental approach — and instead of
rewriting, Rust can be used for new development

* There is a prototype example of this in FreeBSD; others are
presumably possible

Hybrid approach IlI: Rust OS components wJoyent

* An operating system is not just a kernel!

* Operating systems have significant functionality at user-level:
utilities, daemons, service-/device-/fault- management facilities,
debuggers, etc.

* If anything, the definition of the OS is expanding to distributed
system that represents a multi-computer control plane — that
itself includes many components

* These components are much more prone to run-time failure!

* Many of these are an excellent candidate for Rust!

Hybrid approach lll: Rust-based firmware wJoyent

» Below the operating system lurks hardware-facing special-
purpose software: firmware

* Firmware is a sewer of unobservable software with a long
history of infamous quality problems

* Firmware has some of the same challenges as kernel
development (e.g., dealing with allocation failures), but may
otherwise be more amenable to Rust

* This is especially true when/where firmware is in user-space
and is network-facing! (e.g., OpenBMC)

Looking forward: Systems software in Rust wJoyent

* Rust represents something that we haven’t seen in a long time:
a modern language that represents an alternative throughout
the stack of software abstraction

* Despite the interest in operating system kernel implementation,
that might not be a good first fit for Rust

* Rust allows hybrid approaches, allowing for productive kernel
incrementalism rather than whole-system rewrites

* Firmware and user-level operating system software are two very
promising candidates for implementation in Rust!

