
Is it time to rewrite the operating 
system in Rust?

CTO

bryan@joyent.com

Bryan Cantrill

@bcantrill

mailto:rod@joyent.com?subject=


Spoiler alert



What even is the operating system?

• The operating system is harder to define than it might seem…

• For every definition, it can be easy to come up with exceptions 

• At minimum: the operating system is the program that abstracts 
hardware to allow execution of other programs

• The operating system defines the liveness of the machine: 
without it, no program can run

• The operating system software that runs with the highest level 
of architectural privilege is the operating system kernel

• …but the kernel is not the entire operating system! 



Operating system implementation history

• Historically, operating systems — née “executives” — were 
written entirely in assembly

• Starting with the Burroughs B5000 MCP in 1961, operating 
systems started to be written in higher level languages…

• In 1964, when Project MAC at MIT sought to build a successor 
to their Compatible Timesharing System (CTSS), they selected 
the language (PL/I) before writing any code (!)

• But PL/I had no functioning compiler — and wouldn’t until 1966



PL/I in Multics

• The decision to use PL/I in Multics was seen by its creators as a 
great strength, even when reflecting back in 1971: 
 
 
 
 
 
 

• …but that the compiler was unavailable for so long (and when 
was available, performed poorly) was a nearly-fatal weakness

Source: “Multics: The first seven years,” Corbato et al.



The birth of Unix

• Bell Labs pulled out of the Multics project in 1969

• A researcher formerly on the Multics effort, Ken Thompson, 
implemented a new operating system for the PDP-7

• The system was later ported to the PDP-11/20, where it was 
named Unix — a play on “eunuchs” and a contrast to the top-
down complexity of Multics

• Unix was implemented entirely in assembly!



Unix and high-level languages

• The interpreted language B (a BCPL derivative), was present in 
Unix, but only used for auxiliary functionality, e.g. the assembler 
and an early version of dc(1)

• Some of the B that was in use in Unix was replaced with 
assembly for reasons of performance!

• Dennis Ritchie and Thompson developed a B-inspired language 
focused on better abstracting the machine, naming it “C”

• Perhaps contrary to myth, C and Unix were not born at the 
same instant — they are siblings, not twins!



The C revolution

• C is rightfully called “portable assembly”: it is designed to 
closely match the abstraction of the machine itself

• C features memory addressability at its core

• Unlike PL/I, C grew as concrete needs arose

• e.g., C organically adopted important facilities like macro 
processing through the C preprocessor

• Standardization efforts came late and were contentious: C 
remains infamous for its undefined behaviors



Operating systems in the 1980s

• As the minimal abstraction above the machine, C — despite its 
blemishes — proved to be an excellent fit for operating systems 
implementation

• With few exceptions, operating systems — Unix or otherwise — 
were implemented in C throughout the 1980s

• Other systems existed as research systems, but struggled to 
offer comparable performance to C-based systems 



Operating systems in the 1990s

• In the 1990s, object oriented programming came into vogue, 
with languages like C++ and Java

• By the mid-1990s, C-based systems were thought to be relics

• …but the systems putatively replacing them were rewrites — 
and suffered from rampant Second System Syndrome

• They were infamously late (e.g. Apple’s Copland), infamously 
slow (e.g. Sun’s Spring), or both (Taligent’s Pink)

• Java-based operating systems like Sun’s JavaOS fared no 
better; hard to interact with hardware without unsigned types!



Operating systems in the 2000s

• With the arrival of Linux, Unix enjoyed a resurgence — and  
C-based operating systems became deeply entrenched

• With only a few exceptions (e.g., Haiku), serious attempts at 
C++-based kernels withered

• At the same time, non-Java/non-C++ languages blossomed: 
first Ruby, and then Python and JavaScript

• These languages were focused on ease of development rather 
than performance — and there appears to be no serious effort 
to implement an operating system in any of these



Systems software in the 2010s

• Systems programmers began pining for something different: the 
performance of C, but with more powerful constructs as enjoyed 
in other languages

• High-performance JavaScript runtimes allowed for a surprising 
use in node.js — but otherwise left much to be desired

• Bell Labs refugees at Google developed Go, which solves some 
problems, but with many idiosyncrasies

• Go, JavaScript and others are garbage collected, making 
interacting with C either impossible or excruciatingly slow



Rust?

• Rust is a systems software programming language designed 
around safety, parallelism, and speed

• Rust has a novel system of ownership, whereby it can statically 
determine when a memory object is no longer in use

• This allows for the power of a garbage-collected language, but 
with the performance of manual memory management 

• This is important because — unlike C — Rust is highly 
composable, allowing for more sophisticated (and higher 
performing!) primitives



Rust performance (my experience)

Source: http://dtrace.org/blogs/bmc/2018/09/28/the-relative-performance-of-c-and-rust/



Rust: Beyond ownership

• Rust has a number of other features that make it highly 
compelling for systems software implementation:

• Algebraic types allow robust, concise error handling

• Hygienic macros allow for safe syntax extensions

• Foreign function interface allows for full-duplex integration 
with C without sacrificing performance

• “unsafe” keyword allows for some safety guarantees to be 
surgically overruled (though with obvious peril)

• Also: terrific community, thriving ecosystem, etc.



Operating systems in Rust?

• If the history of operating systems implementation teaches us 
anything, it’s that runtime characteristics trump development 
challenges!

• Structured languages (broadly) replaced assembly because 
they performed as well

• Viz., every operating system retains some assembly for reasons 
of performance!

• With its focus on performance and zero-cost abstractions, Rust 
does represent a real, new candidate programming language 
for operating systems implementation



Operating systems in Rust: A first attempt

• First attempt at an operating system kernel in Rust seems to be 
Alex Light’s Reenix, ca. 2015: a re-implementation of a teaching 
operating system in Rust as an undergrad thesis

• Biggest challenge in Reenix was that Rust forbids an application 
from handling allocation failure

• The addition of a global allocator API has improved this in that 
now a C-based system can at least handle pressure…

• …but dealing with memory allocation failure is still very much an 
unsettled area for Rust (see Rust RFC 2116)



Operating systems in Rust since 2015

• Since Reenix’s first efforts, there have been quite a few small 
systems in Rust, e.g.: Redox, Tifflin, Tock, intermezzOS, 
RustOS/QuiltOS, Rux, and Philipp Oppermann’s Blog OS

• Some of these are teaching systems (intermezzOS, Blog OS), 
some are unikernels (QuiltOS) and/or targeted at IoT (Tock)

• These systems are all de novo, which represents its own 
challenges, e.g. forsaking binary compatibility with Linux and 
fighting Second System Syndrome



Operating systems in Rust: The challenges

• While Rust’s advantages are themselves clear, it’s less clear 
what the advantage is when replacing otherwise working code

• For in-kernel code in particular, the safety argument for Rust 
carries less weight: in-kernel C tends to be de facto safe

• Rust does, however, presents new challenges for kernel 
development, esp. with respect to multiply-owned structures

• An OS kernel — despite its historic appeal and superficial fit for 
Rust — may represent more challenge than its worth

• But what of hybrid approaches?



Hybrid approach I: Rust in-kernel components

• One appeal of Rust is its ability to interoperate with C

• One hybrid approach to explore would be to retain a  
C-/assembly-based kernel while allowing for Rust-based  
in-kernel components like device drivers and filesystems

• This would allow for an incremental approach — and instead of 
rewriting, Rust can be used for new development

• There is a prototype example of this in FreeBSD; others are 
presumably possible



Hybrid approach II: Rust OS components

• An operating system is not just a kernel!

• Operating systems have significant functionality at user-level: 
utilities, daemons, service-/device-/fault- management facilities, 
debuggers, etc.

• If anything, the definition of the OS is expanding to distributed 
system that represents a multi-computer control plane — that 
itself includes many components

• These components are much more prone to run-time failure!

• Many of these are an excellent candidate for Rust!



Hybrid approach III: Rust-based firmware

• Below the operating system lurks hardware-facing special-
purpose software: firmware

• Firmware is a sewer of unobservable software with a long 
history of infamous quality problems

• Firmware has some of the same challenges as kernel 
development (e.g., dealing with allocation failures), but may 
otherwise be more amenable to Rust

• This is especially true when/where firmware is in user-space 
and is network-facing! (e.g., OpenBMC)



Looking forward: Systems software in Rust

• Rust represents something that we haven’t seen in a long time: 
a modern language that represents an alternative throughout 
the stack of software abstraction

• Despite the interest in operating system kernel implementation, 
that might not be a good first fit for Rust

• Rust allows hybrid approaches, allowing for productive kernel 
incrementalism rather than whole-system rewrites

• Firmware and user-level operating system software are two very 
promising candidates for implementation in Rust!


