
Airbnb’s Great Migration:  
From Monolith to Service-Oriented

JESSICA TAI / 11.06.18 / Q CON SF

Life with monolith Growing pains

Service design  
principlesMigration to services

Best practices Results

Life with monolith Growing pains

Service design  
principlesMigration to services

Best practices Results

Life with monolith Growing pains

Service design  
principlesMigration to services

Best practices Results

Life with monolith Growing pains

Service design  
principlesMigration to services

Best practices Results

Life with monolith Growing pains

Service design  
principlesMigration to services

Best practices Results

Life with monolith Growing pains

Service design  
principlesMigration to services

Best practices Results

Monorail, our Ruby on Rails monolith

Easy to get started with a monolith
E ARLY AIRBNB

Client

Monolithic
application

Database

Database model 
 
host.first_name, message.save!  

2014 new hire task
REQUIRED MESSAGE TO HOST

View template 
 
<h1>Tell your host %{host.name},  
 “Hello”</h1>

2014 new hire task
REQUIRED MESSAGE TO HOST

Controller endpoint logic 
 
/submit_booking 

Model View Controller in Monorail

2014 new hire task
REQUIRED MESSAGE TO HOST

Volunteer dev infra  
& sysops

WHY DECIDE TO MIGRATE?

x

Difficult to scale monoliths
SINGLE MEGA-SERVICE FOR ALL CONCERNS

Client

ModelA ModelB

ModelCModelD

ConcernBConcernA

ConcernD ConcernC

Database

Monolith

Difficult to scale monoliths
SINGLE MEGA-SERVICE FOR ALL CONCERNS

Client

ModelA ModelB

ModelC

ModelD

ConcernBConcernA

ConcernD ConcernC

Database

Monolith

Difficult to scale monoliths
SINGLE MEGA-SERVICE FOR ALL CONCERNS

Client

ModelA ModelB

ModelC

ModelD

ConcernB

ConcernC

Database

Monolith

ModelE

ConcernA

ConcernD

1,000,000

2,000,000

3,000,000

4,000,000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Increasingly large Monorail
LINES OF CODE GROWTH

GROWING PAINS

Growing pains

200+ 200 15h
Commits deployed to

Monorail per day
Engineers at Airbnb Time Monorail

deployed blocked per
week

Message to host
MANY TE AMS

s

Message to host
THOUSANDS OF LINES, HUNDREDS OF CONTRIBUTORS

Message model

More incidents Slower deploy trains

More incidents Slower deploy trains

Our solution: Service-oriented architecture (SOA)
NETWORK OF LO OSELY-COUPLED SERVICES

Client

API gateway

Service1

Service2

Database2Database3

Service3

Checkout page in SOA

Business travel service

Cancellation service

Home demand service

Pricing service

Home service

Reservation service

Review service

Messaging service

S OA DESIGN TENETS

Services own reads & writes  
to their data

Services address a specific concern

Avoid duplicate functionality

https://www.flickr.com/photos/popilop/331357312

Mutations propagate  
via standard events  

(open sourced Spinaltap)

https://medium.com/airbnb-engineering/capturing-data-evolution-in-a-service-oriented-architecture-72f7c643ee6f

GETTING STARTED WITH
THE MIGRATION

HOSTED BY BAILEY

Idyllic home in the trees
$ 9 9 PER NIGHT

! Replace data access methods with service call

! Ruby metaprogramming to override methods

First attempts to  
break apart Monorail

Database

Home.find_by_host_id(4)

ActiveRecord

ActiveRecord adapter

Mysql adapter

Monolith

Migrating Rails’s ActiveRecord

select * from homes where host_id = 4

Monolith

Custom ActiveRecord adapter

Home.find_by_host_id(4)

ActiveRecord

query object

ActiveRecord adapter

select * from homes where host_id = 4

Parse to request object

ActiveRecord adapter

:type => :select,
:table => “homes”,
:filters => [{
 :name => “host_id”,
 :type => "integer",
 :nullable => false,
 :comparator => :eq,
 :value => 4,
 }],
:select => [“id”, “host_id”, “title”],

Monolith

/loadHomes
{
 host_id: 4,
 fields: [“id”,
“host_id”,“title”]
}

query object

Re-route queries to services

ActiveRecord adapter

query object

Database

Request 
{host_id: 4

…}
Home service

Monolith

SERVICE INTERACTION DESIGN

Service request

API gateway

Service

Monorail

Service

Interim Future

API traffic

Service types
STRICT FLOW OF DEPENDENCIES

Presentation service

Data service

Database

Derived data service

Derived data
store

Own reads & writes
to data entities

Shared business 
logic to disparate  
data sources

Synthesize data
from services for
end users

Middle tier
Shared
validation  
logic

API traffic

Checkout page
Checkout page

presentation service

Reservation data
service

Reservation
database

Home demand
derived data service

Offline booking
trend stats

Reservation validation
middle-tier service

Home data service

Home
database

Write

Read

API traffic

COMPARE FOR DIFFERENCES

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

5%

Production 
traffic

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

10%

Production 
traffic

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

25%

Production 
traffic

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

50% Production 
traffic

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

100%

Production 
traffic

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

100%

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

Read path A

Read path B

Dual read comparison

WaitRamp & waitCompareGate

Admin UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monolith

Service

Database

The read path

Write comparison
DUAL WRITE TO SEPARATE DATABASES

Presentation service

Production
database

Shadow
database

Write validation
middle tier service

Write path A

Write path B

Reads

Monolith

s

Write comparison: services
DUAL WRITE

Presentation service

Production
database

Write validation
middle tier service

The write path

Monolith

Incremental migration

! Compare one endpoint at a time

! Unblock clients with incomplete service

○ e.g. /loadUsers

○ fetch users only by id

Migrate by endpoint

Migrate by attribute

Service Monolith

Database

Read migrated 
attributes

Read not-yet-migrated  
attributes

Database

Presentation service

Production traffic

S OA BEST PRACTICES

Frameworks
Auto-generate code

Testing & deploying
Replay production traffic

Observability
Standard templates

Standardize service building
CONSISTENCY

Service

Service & client setup

Business logic

Service

Service & client setup

Business logic

Endpoint logic

Server
transport

Service

Service & client setup

Business logic

Endpoint logic

Server
transport

Java client

Ruby client

Client
transport

Client
transport

Service

Service & client setup

Business logic

Server metrics

Server
diagnostics

Startup /
teardown

Endpoint logic

Metrics
Data

validation
Server

transport
Server

resilience

Java client

Ruby client

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Type
checking

Service

Endpoint logic

Service & client setup

Business logic

Server metrics

Server
diagnostics

Startup /
teardown

Dashboard
Dashboard

Alert
Alert

Alert

Runbook
documentation

Metrics
Data

validation
Server

transport
Server

resilience

Java client

Ruby client

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Type
checking

Service

Endpoint logic

Service & client setup

Business logic

Server metrics

Server
diagnostics

Startup /
teardown

Dashboard
Dashboard

Alert
Alert

Alert

Runbook
documentation

Metrics
Data

validation
Server

transport
Server

resilience

Java client

Ruby client

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Type
checking

IDL using Thrift

IDL
Service

Endpoint logic

Business logic

Server metrics

Server
diagnostics

Startup /
teardown

Dashboard
Dashboard

Alert
Alert

Alert

Runbook
documentation

Metrics
Data

validation
Server

transport
Server

resilience

Java client

Ruby client

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Type
checking

Coding services

BEFORE AFTER

! Difficult to create and  

maintain services 

! Custom Java vs. Ruby clients

! Autogenerated code  

framework & API 

! Automated ruby gem client

Thrift IDL
API FRAMEWORK

/* Batch request */ 
struct LoadSomeDataRequest {
 1: optional set<i64> ids (non_null)
 2: optional bool fooBar
}

/* id to data response */
struct LoadSomeDataResponse {
 1: optional map<i64, SomeData> data
}

/* /loadSomeData endpoint */ 

LoadSomeDataResponse loadSomeData
 
(1: LoadSomeDataRequest request) 

throws (1: SomeException exception1)
 
(accept_replay = "true", rate_limit = "true")

Thrift IDL
API FRAMEWORK

Testing & deploying

BEFORE AFTER

! Uncertainty in pre-production 

environments 

! Trigger manual requests

! Structured pre-production 

process 

! Automated replayed traffic

Testing & deploying
TIMELINE

ProductionCanaryDiffyStagingLocal dev

Dev
environment

supports local
services

Testing & deploying
TIMELINE

Replayed
production
traffic with

other staging
services

ProductionCanaryDiffyStagingLocal dev

Testing & deploying
TIMELINE

ProductionCanaryDiffyStagingLocal dev

Compare
responses from
staging against

production

Regression Testing
DIFF Y

Staging
(new code)

Primary  
(old code)

Secondary
(old code)

Raw response
differences

Non- 
deterministic

noise

Filtered
response

differences

Diffy

Replayed traffic

github.com/twitter/diffy

https://github.com/twitter/diffy

Testing & deploying
TIMELINE

ProductionCanaryDiffyStagingLocal dev

Deploy to single
instance of
production

Testing & deploying
TIMELINE

ProductionCanaryDiffyStagingLocal dev

Confidently
deploy to prod

Observability

BEFORE AFTER

! Nonstandard metrics,  

dashboards  

! Inconsistent alerts

! IDL templated metrics,  

dashboards 

! IDL annotation alerts

HOW IS THE MIGRATION
G OING S O FAR?

Airbnb’s SOA
progress

Services using IDL framework250+

IDL service endpoints supported1000+

! Faster build & deploy times

○ Hours (Monorail) to minutes (service)

○ Fewer reverts

! Clear service ownership

! Quicker bug fixes

Promising initial results
SUCCESS

! Ruby Monorail single-threaded

! Java services multi-threaded

! Lower latency from parallelization

○ Search results page 3x faster

○ Home description page 10x faster!

Latency results
SUCCESS

800+ 3k
Deploys per weekEngineers

2017

800+ 3k

Deploys per weekEngineers

1000+ 10k

2017

2018

Product 
Frontend 

User Interface

Infrastructure 
Backend
Services

Services
On-callProduct Infra

Checkout page required message in SOA Checkout presentation

Pricing data

Home data

Reservation data

Review data

Home demand
derived data

Cancellation
derived data

Business travel
derived data

Messaging data

SOA is not for everyone
CAUTION

Distributed services
CAUTION

Complex service orchestration
CAUTION

High investment cost
CAUTION

! Be ready for a long commitment

! Compare slowly & carefully

! Standardize services

! Frameworks, tools, documentation

SOA migration
TAKE AWAYS

Look both ways  
before your Great Migration

linkedin.com/in/jessicatai 
@jessicamtai

http://linkedin.com/in/jessicatai

