
Netflix Titus, its Feisty
Team, and Daemons

Titus - Netflix’s Container Management Platform

Scheduling

● Service & batch job lifecycle
● Resource management

Container Execution

● AWS Integration
● Netflix Ecosystem Support

Service

Job and Fleet Management

Resource Management &
Optimization

Container Execution

Batch

Stats

Containers Launched
Per Week

Batch vs. Service

3 Million /
Week

Batch runtimes
(< 1s, < 1m, < 1h, < 12h, < 1d, > 1d)

Service runtimes
(< 1 day, < 1 week, < 1 month, > 1 month)

Autoscaling

High Churn

The Titus team

● Design
● Develop
● Operate
● Support

* And Netflix Platform Engineering and Amazon Web Services

Titus Product Strategy

Ordered priority focus on
● Developer Velocity
● Reliability
● Cost Efficiency

Easy migration from VMs to containers
Easy container integration with VMs and Amazon Services
Focus on just what Netflix needs

Deeply integrated AWS container platform

IP per container
● VPC, ENIs, and security groups

IAM Roles and Metadata Endpoint per container
● Container view of 169.254.169.254

Cryptographic identity per container
● Using Amazon instance identity document, Amazon KMS

Service job container autoscaling
● Using Native AWS Cloudwatch, SQS, Autoscaling policies and engine

Application Load Balancing (ALB)

Applications using containers at Netflix

● Netflix API, Node.js Backend UI Scripts
● Machine Learning (GPUs) for personalization
● Encoding and Content use cases
● Netflix Studio use cases
● CDN tracking, planning, monitoring
● Massively parallel CI system
● Data Pipeline and Stream Processing
● Big Data use cases (Notebooks, Presto)

Batch
Q4 15

Basic
Services

1Q 16

Production
Services

4Q 16

Customer
Facing

Services
2Q 17

Q4 2018 Container Usage
Common

Jobs Launched 255K jobs / day

Different applications 1K+ different images

Isolated Titus deployments 7

Services

Single App Cluster Size 5K (real), 12K containers (benchmark)

Hosts managed 7K VMs (435,000 CPUs)

Batch

Containers launched 450K / day (750K / day peak)

Hosts managed (autoscaled) 55K / month

High Level Titus Architecture

Cassandra

Titus Control Plane

● API
● Scheduling
● Job Lifecycle Control

 EC2 Autoscaling

Fenzo

container
container

container

docker

Titus Hosts

Mesos agent

Docker

 Docker Registry

containercontainerUser Containers

AWS Virtual Machines

 Mesos

Titus System ServicesBatch/Workflow
Systems

Service
CI/CD

Open Source

Open sourced April 2018
Help other communities by sharing our approach

Lessons Learned

End to End
User Experience

Our initial view of containers

Image
Registry
Publish

Run
Container
Workload

Monitor
ContainersDeploy new

Container
Workload

“The Runtime”

What about?

Image
Registry
Publish

Run
Container
Workload

Monitor
Containers

Deploy new
Container
Workload

Security
Scanning

Change
Campaigns

Ad hoc
Performance

analysis

What about?

Local Development CI/CD Runtime

End to end tooling

Container orchestration only part of the problem

For Netflix …

● Local Development - Newt
● Continuous Integration - Jenkins + Newt
● Continuous Delivery - Spinnaker
● Change Campaigns - Astrid
● Performance Analysis - Vector and Flamegraphs

Tooling guidance

● Ensure coverage for entire application SDLC
○ Developing an application before deployment
○ Change management, security and compliance tooling for runtime

● What we added to Docker tooling
○ Curated known base images
○ Consistent image tagging
○ Assistance for multi-region/account registries
○ Consistency with existing tools

Operations and
High Availability

● Single container crashes
● Single host crashes
● Control plane fails
● Control plane gets into bad state

Learning how things fail

Increasing
S

everity

● Single container crashes
● Single host crashes

○ Taking down multiple containers

● Control plane fails
● Control plane gets into bad state

Learning how things fail

Increasing
S

everity

● Single container crashes

● Single host crashes

● Control plane fails
○ Existing containers continue to run
○ New jobs cannot be submitted
○ Replacements and scale ups do not occur

● Control plane gets into bad state

Learning how things fail

Increasing
S

everity

● Single container crashes

● Single host crashes

● Control plane fails

● Control plane gets into bad state
○ Can be catastrophic

Learning how things fail

Increasing
S

everity

● Most orchestrators will recover

● Most often during startup
or shutdown

● Monitor for crash loops

Case 1 - Single container crashes

Case 2 - Single host crashes

● Need a placement engine that spreads critical workloads

● Need a way to detect and remediate bad hosts

Titus node health monitoring, scheduling

● Extensive health checks
○ Control plane components - Docker, Mesos, Titus executor
○ AWS - ENI, VPC, GPU
○ Netflix Dependencies - systemd state, security systems

Scheduler

Health Check and
Service Discovery

✖

+

+
✖

Titus hosts

Titus node health remediation

● Rate limiting through centralized service is critical

Scheduler ✖

+

+

Infrastructure
Automation
(Winston)

Events Automation
 perform analysis on host
 perform remediation on host

 if (unrecoverable) {
 tell scheduler to reschedule work
 terminate instance
 }

Titus hosts

Spotting fleet wide issues using logging

● For the hosts, not the containers
○ Need fleet wide view of container runtime, OS problems
○ New workloads will trigger new host problems

● Titus hosts generate 2B log lines per day
○ Stream processing to look for patterns and remediations

● Aggregated logging - see patterns in the large

Case 3 - Control plane hard failures

White box - monitor time
bucketed queue length

Black box - submit
synthetic workloads

Case 4 - Control plane soft failures

I don’t feel so good!

But first, let’s talk about Zombies

● Early on, we had cases where
○ Some but not all of the control plane was working
○ User terminated their containers
○ Containers still running, but shouldn’t have been

● The “fix” - Mesos implicit reconciliation
○ Titus to Mesos - What containers are running?
○ Titus to Mesos - Kill these containers we know shouldn’t be running
○ System converges on consistent state 👍

Disconnected containers

But what if?

Cluster
State

Scheduler

Controller

Host

✖

✖

✖
✖

Backing store
gets corrupted

Or

Control plane reads
store incorrectly

Bad things occur

12,000 containers “reconciled” in < 1m

An hour to restore service

Running
Containers

Not running
Containers

Guidance

● Know how to operate your cluster storage
○ Perform backups and test restores
○ Test corruption
○ Know failure modes, and know how to recover

At Netflix, we ...

● Moved to less aggressive reconciliation

● Page on inconsistent data
○ Let existing containers run
○ Human fixes state and decides how to proceed

● Automated snapshot testing for staging

Security

● Enforcement
○ Seccomp and AppArmor policies

● Cryptographic identity for each container
○ Leveraging host level Amazon and control plane provided identities
○ Validated by central Netflix service before secrets are provided

Reducing container escape vectors

User namespaces

● Root (or user) in container != Root (or user) on host
● Challenge: Getting it to work with persistent storage

Reducing impact of container escape vectors

user_namespaces (7)

Lock down, isolate control plane

● Hackers are scanning for Docker and Kubernetes
● Reported lack of networking isolation in Google Borg
● We also thought our networking was isolated (wasn’t)

Avoiding user host level access

Vector

ssh

perf tools

Scale - Scheduling Speed

How does Netflix failover?

✖

Kong

Netflix regional failover

Kong evacuation of us-east-1
Traffic diverted to other regions

Fail back to us-east-1
Traffic moved back to us-east-1

API Calls Per Region

EU-WEST-1

US-EAST-1

● Increase capacity during scale up of savior region
● Launch 1000s of containers in 7 minutes

Infrastructure challenge

Easy Right?

“we reduced time to schedule 30,000
pods onto 1,000 nodes from

8,780 seconds to 587 seconds”

Easy Right?

“we reduced time to schedule 30,000
pods onto 1,000 nodes from

8,780 seconds to 587 seconds”

Synthetic benchmarks missing

1. Heterogeneous workloads
2. Full end to end launches
3. Docker image pull times
4. Integration with public cloud networking

Titus can do this by ...

● Dynamically changeable scheduling behavior

● Fleet wide networking optimizations

Normal scheduling

VM1

...

VM2 VMn

App 1 App 1

App 2

ENI1 ENI 2

App 2

App 1

ENI1 ENI1 ENI 2

Trade-off for reliability

IP1 IP1 IP1 IP1 IP1

Spread Pack

Scheduling Algorithm

Failover scheduling

VM1

...

VM2 VMn

App 1 App 1

App 2

ENI1 ENI 2

App 2

App 1

ENI1 ENI1 ENI 2

App 1

App 1

App 1

App 1

App 1

App 2

App 2

IP1 IP1 IP1 IP1 IP1

Spread Pack

IP2, IP3 IP2, IP3, IP4 IP2, IP3

Trade-off for speed

Scheduling Algorithm

● Due to normal scheduling, host likely already has ...
○ Docker image downloaded
○ Networking interfaces and security groups configured

● Need to burst allocate IP addresses
○ Opportunistically batch allocate at container launch time
○ Likely if one container was launched more are coming
○ Garbage collect unused later

On each host

Results

us-east-1 / prod
containers started per minute

7500 Launched
In 5 Minutes

Scale - Limits

How far can a single Titus stack go?

● Speed and stability of scheduling
● Blast radius of mistakes

Scaling options

Idealistic

Continue to improve
performance

Avoid making mistakes

Realistic

Test a stack up to a
known scale level

Contain mistakes

Titus “Federation”

● Allows a Titus stack to be scaled out
○ For performance and reliability reasons

● Not to help with
○ Cloud bursting across different resource pools
○ Automatic balancing across resource pools
○ Joining various business unit resource pools

Federation Implementation

● Users need only to know of the external single API
○ VIP - titus-api.us-east-1.prod.netflix.net

● Simple federation proxy spans stacks (cells)
○ Route these apps to cell 1, these others to cell 2
○ Fan out & union queries across cells
○ Operators can route directly to specific cells

Titus Federation

…

Titus API
(Federation Proxy)

Titus cell01

us-west-2

Titus cell02

…

Titus cell01

us-east-1

Titus cell02

…

Titus cell01

eu-west-1

Titus cell02

Titus API
(Federation Proxy)

Titus API
(Federation Proxy)

How many cells?

A few large cells

● Only as many as needed for scale / blast radius

Why? Larger resource pools help with

● Cross workload efficiency
● Operations
● Bad workload impacts

Performance and Efficiency

● A fictional “16 vCPU” host

● Left and right are CPU packages
● Top to bottom are cores with hyperthreads

Simplified view of a server

Consider workload placement

● Consider three workloads
○ Static A, B, and C all which are latency sensitive
○ Burst D which would like more compute when available

● Let’s start placing workloads

Problems

● Potential performance problems
○ Static C is crossing packages
○ Static B can steal from Static C

● Underutilized resources
○ Burst workload isn’t using all available resources

Node level CPU rescheduling

● After containers land on hosts
○ Eventually, dynamic and cross host

● Leverages cpusets
○ Static - placed on single CPU package and exclusive full cores
○ Burst - can consume extra capacity, but variable performance

● Kubernetes - CPU Manager (beta)

Opportunistic workloads

● Enable workloads to burst into underutilized resources
● Differences between utilized and total

U
til

iz
at

io
n

time

Resources (Total)

Resources (Allocated)

Resources (Utilized)

Questions?

Follow-up: @aspyker

