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Safe Harbor Statement

The following is intended to outline our general product directon. It is intended for 
informaton purposes only, and may not be incorporated into any contract. It is not a 
commitment to deliver any material, code, or functonality, and should not be relied upon 
in making purchasing decisions. The development, release, tming, and pricing of any 
features or functonality described for Oracle’s products may change and remains at the 
sole discreton of Oracle Corporaton.
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About me

• Java/JVM Performance Engineer at Oracle, @since 2010

• Java/JVM Performance Engineer, @since 2005

• Java/JVM Engineer, @since 1996
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System Under Test

• Intel® Core� i5-5300U [2.3 GHz] 1x2x2
– μarch: Haswell
– launched: Q1’2015s

• OS: Xubuntu 18.04 (64-bits) (4.15.0-36-generic)

• Java 8 (64-bits)

• Java 11 (64-bits)

4



Copyright © 2018, Oracle and/or its afliates. All rights reserved.  

 

Demo code

https://github.com/kuksenko/quantum2

• Required: JMH (Java Microbenchmark Harness)
– http://openjdk.java.net/projects/code-tools/jmh/
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Demo 1: How to copy 2 Mbytes.

6



Copyright © 2018, Oracle and/or its afliates. All rights reserved.  

 

Demo 1

int[] a = new int[512*1024];
int[] b = new int[512*1024];

@Benchmark
public void arraycopy() {

System.arraycopy(a, 0, b, 0, a.length);
}

@Benchmark
public void reversecopy() {

for(int i = a.length - 1; i >= 0; i--) {
b[i] = a[i];

}
}

740 μs

300 μs
??

* Using Java 8
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Conclusions?

• Oracle engineers - rubbish!

– I know how to copy faster!
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Shared results within team

• What I got:

– arraycopy vs reversecopy: 740 vs 300 μs

• What Bob got (on some MacBook Pro):

– arraycopy vs reversecopy: 190 vs 185 μs

• What Alice got (she already migrated to JDK11):

– arraycopy vs reversecopy: 270 vs 280 μs

• What if copy less data ”2Mbytes - 32 bytes”:

– arraycopy vs reversecopy: 280 vs 720 μs
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spent a billion on research

• MacOS doesn’t support ”Large Pages”!

– Ubuntu - ”Transparent Huge Pages”

• G1 is default GC since Java 9!

– Java 8 default GC - ”ParallelOld”

Conclusions:
• Large Pages - Rubbish!

• G1 GC - Cool!
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To Be Continued ...

11



Copyright © 2018, Oracle and/or its afliates. All rights reserved.  

Demo 2: How many data?
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Demo 2: The Last Jedi Refactoring

public class MyData {

private byte[] bytes;
private int length;

public MyData(int length) {
this.bytes = new byte[length];
this.length = length;

}

public int length() { return length; }

public byte[] bytes() { return bytes; }
}
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Demo 2: dataSize(MyData)

MyData[] data = new MyData[256];

@Setup
public void setup() {

Random rnd = new Random();
Arrays.setAll(data, i -> new MyData(512 * 1024 + rnd.nextInt(64 * 1024)));

}

@Benchmark
public int dataSize() {

int s = 0;
for (MyData a : data) {

s += a.length();
}
return s;

}
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Demo 2: dataSize(byte[])

byte[][] data = new byte[256][];

@Setup
public void setup() {

Random rnd = new Random();
Arrays.setAll(data, i -> new byte[512 * 1024 + rnd.nextInt(64 * 1024)]);

}

@Benchmark
public int dataSize() {

int s = 0;
for (byte[] a : data) {

s += a.length;
}
return s;

}
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Demo 2: results (Java 8)

DataSize(MyData) 145 ns
DataSize(byte[]) 200 ns

What if turn on G1? (-XX:+UseG1GC)

DataSize(MyData) 145 ns
DataSize(byte[]) 13045 ns

?

???
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Demo 2: results

What if turn off ”Large Pages”?

ParallelOld GC:
DataSize(MyData) 145 ns
DataSize(byte[]) 250 ns

G1 GC:
DataSize(MyData) 145 ns
DataSize(byte[]) 635 ns

??
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Demo 2: Conclusions

Conclusions:
• Large Pages - Rubbish!

• G1 GC - Rubbish!
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To Be Continued ...
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Why we are here?
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Caches, caches everywhere

21



Copyright © 2018, Oracle and/or its afliates. All rights reserved.  

 

Caches in numbers (Intel Core i5-5300U)

L1 - 32K, 8-way, latency: 4 cycles

L2 - 256K, 8-way, latency: 12 cycles

L3 - 3M, 12-way, latency: 35(and more) cycles

- cache line - 64 bytes
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Demo 3: memory access cost.
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Demo 3: walking on memory

Node root;

@Benchmark
@OperationsPerInvocation(COUNT)
public int walk() {

return forward(root, COUNT);
}

public int forward(Node node, int cnt) {
for(int i=0; i < cnt; i++) {

node = node.next;
}
return node.value;

}
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Demo 3: walking on memory

2.2 ns

5.2 ns

15.4 ns

35 ns

25



Copyright © 2018, Oracle and/or its afliates. All rights reserved.  

 

Demo 3: walking on memory

What about HW prefetching?
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Demo 3: different mix
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Demo 3: different mix
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Demo 3: different mix

2.7x
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Demo 3: different mix

4x
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Demo 3: different mix

12.6x
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Demo 4: to split or not to split?
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Demo 4: Good old Unsafe!
Unsafe UNSAFE;

long from; // page alignment

@Param({"-8", "-4", "-2", "0", "2", "4", "8" })
int offset; // offset in bytes

@Benchmark
public long getlong() {

return UNSAFE.getLong(a, from + offset);
}

@Benchmark
public void putlong() {

UNSAFE.putLong(a, from + offset, 42L);
}
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Demo 4: Results

offset getlong putlong
-8 5.0 1.8
-4 19.1 17.8
0 5.0 1.8
60 5.2 2.5
64 5.0 1.8

time, ns/op

unaligned data:

Page Split!

Line Split!
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Demo 4: Misalignment

But wait!

Java doesn’t have misaligned data!

There are no misaligned data,

but there are misaligned operations.
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Demo 4: Misalignment

Java misaligned access:
• Unsafe/VarHandle

– Buffers

– Offheap

• SIMD instructions (SSE, AVX ...)

– HotSpot intrinsics (System.arraycopy, Arrays.fill ...)
– Automatic vectorization
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Demo 4: Arrays.fill

int from; // alignment to page boundary

int size;

int offset;

byte[] a;

@Benchmark
public void fill() {

Arrays.fill(a, from + offset, from + offset + size, (byte)42);
}
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Demo 4: Arrays.fill, 512 bytes
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Demo 4: Arrays.fill, 512 bytes
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Demo 5: upside down
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Demo 5: matrix transpose

int size;

double[][] matrix = new double[size][size];

@Benchmark
public void transpose() {

for (int i = 1; i < size; i++) {
for (int j = 0; j < i; j++) {

double tmp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = tmp;

}
}

}
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Demo 5: results (NxN)

N
N+0

88 μs

N+1

350 μs

N+2

94 μs

N+3 80 μs
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Demo 5: results (NxN)

N
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Demo 5: results (NxN)

N
253 88 μs
254 350 μs
255 94 μs
256 80 μs
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Demo 5: matrix transpose
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Cache Associativity
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Critical Stride

〈Crtc Strde〉 = 〈Cche Sze〉
〈Assoctty〉

• L1 (32K, 8-way) ⇒ 4K

• L2 (256K, 8-way) ⇒ 32K

• L3 (3M, 12-way) ⇒ 256K

45



Copyright © 2018, Oracle and/or its afliates. All rights reserved.  

Demo 2: How many data?(cont.)
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”critical stride” hit

Let’s count:

• G1 GC
– all arrays are aligned to 1M (256K, 32K, 4K)

• ParallelOld GC
– 256 arrays ⇒ 254 different ”index sets” в L3
– 256 arrays ⇒ 251 different ”index sets” в L2
– 256 arrays ⇒ 62 different ”index sets” в L1

– number of hits to L1 index sets:
10, 9, 8, 8, 8, 7, 7...
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Demo 6: the rich get richer
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Demo 6: Walking dead threads

@Benchmark
@Group("pair")
@OperationsPerInvocation(COUNT)
public int bob() {

return forward(root, COUNT);
}

@Benchmark
@Group("pair")
@OperationsPerInvocation(COUNT)
public int alice() {

return forward(root, COUNT);
}

Each thread has it’s own root
and independent data.
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Demo 6: 128K per thread

Iteration 1:
bob: 5.246 ns/op
alice: 5.241 ns/op

Iteration 2:
bob: 5.254 ns/op
alice: 5.272 ns/op

Iteration 3:
bob: 5.233 ns/op
alice: 5.244 ns/op

Iteration 4:
bob: 5.244 ns/op
alice: 5.232 ns/op
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Demo 6: 1M per thread

Iteration 1:
bob: 14.495 ns/op
alice: 14.614 ns/op

Iteration 2:
bob: 14.289 ns/op
alice: 14.331 ns/op

Iteration 3:
bob: 14.242 ns/op
alice: 14.296 ns/op

Iteration 4:
bob: 14.332 ns/op
alice: 14.332 ns/op
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Demo 6: 2M per thread

Iteration 1:
bob: 17.199 ns/op
alice: 48.845 ns/op

Iteration 2:
bob: 46.777 ns/op
alice: 20.850 ns/op

Iteration 3:
bob: 17.046 ns/op
alice: 48.686 ns/op

Iteration 4:
bob: 46.422 ns/op
alice: 20.704 ns/op

Fight for LLC!
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Demo 7: Bytes histogram
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Demo 7: count bytes frequency

byte[] source; // SIZE == 16 * K;

@Benchmark
public int[] count1() {

int[] table = new int[256];
for (byte v : source) {

table[v & 0xFF]++;
}
return table;

}
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Demo 7: count bytes frequency

byte[] source; // SIZE == 16 * K;

@Benchmark
public int[] count1() {

int[] table = new int[256];
for (byte v : source) {

table[v & 0xFF]++;
}
return table;

}

13.7 μs

What if the data is unevenly distributed?
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Results
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Store Buffer

CPU

L1 Cache

4-5
clocks
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Store Buffer

CPU

L1 Cache

4-5
clocks

Store
Buffer

56



Copyright © 2018, Oracle and/or its afliates. All rights reserved.  

 

Store Forwarding

Store A;

Load B;

Load A;
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Store Forwarding

Store A;

Load B;

Load A;

* Store Buffer

Store A;
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Store Forwarding

Store A;

Load B;

Load A;

*

Store Buffer

Store A;

No “B” in Store Buffer
Execute!

even before Store
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Store Forwarding

Store A;

Load B;

Load A;*

Store Buffer

Store A;

“A” exists in
Store Buffer What to do?
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Hit to “Store Buffer”

• Wait until “Store A” reaches L1 (expensive)

• Take value from Store Buffer (a.k.a. “Store Forwarding”)
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Let’s do this

@Benchmark
public int[] count2() {

int[] table0 = new int[256];
int[] table1 = new int[256];
for (int i = 0; i < source.length; ) {

table0[source[i++] & 0xFF]++;
table1[source[i++] & 0xFF]++;

}
for (int i = 0; i < 256; i++) {

table0[i] += table1[i];
}
return table0;

}
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... and this
@Benchmark
public int[] count4() {

int[] table0 = new int[256];
int[] table1 = new int[256];
int[] table2 = new int[256];
int[] table3 = new int[256];
for (int i = 0; i < source.length; ) {

table0[source[i++] & 0xFF]++;
table1[source[i++] & 0xFF]++;
table2[source[i++] & 0xFF]++;
table3[source[i++] & 0xFF]++;

}
for (int i = 0; i < 256; i++) {

table0[i] += table1[i] + table2[i] + table3[i];
}
return table0;

}
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Results
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Demo 8: bytes ⇔ int
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Demo 8: bytes ⇔ int

ByteBuffer buf = ByteBuffer.allocateDirect(4);

@Benchmark
public int bytesToInt() {

buf.put(0, b0);
buf.put(1, b1);
buf.put(2, b2);
buf.put(3, b3);
return buf.getInt(0);

}

@Benchmark
public int intToBytes() {

buf.putInt(0, i0);
return buf.get(0) + buf.get(1) +

buf.get(2) + buf.get(3);
}

13.2 ns

7.9 ns
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Demo 8: Store Forwarding success

int

byte

byte

byte

byte

Store

Load

Load

Load

Load
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Demo 8: Store Forwarding fail

int

byte

byte

byte

byte

Store

Store

Store

Store

Load
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Demo 1: back to arraycopy
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Demo 1: looking into asm

loop: vmovdqu -0x38(%rdi,%rdx,8),%ymm0
vmovdqu %ymm0,-0x38(%rsi,%rdx,8)
vmovdqu -0x18(%rdi,%rdx,8),%ymm1
vmovdqu %ymm1,-0x18(%rsi,%rdx,8)
add $0x8,%rdx
jle loop

loop: vmovdqu -0xc(%r8,%rbx,4),%ymm0
vmovdqu %ymm0,-0xc(%r10,%rbx,4)
add $0xfffffff8,%ebx
cmp $0x6,%ebx
jg loop

22

arraycopy reversecopy
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Demo 1: What about memory layout?

• ParallelOld GC
– AddressOf(a) == 0x76d890628
– AddressOf(b) == 0x76da90638
– AddressOf(b) − AddressOf(a) == 2Mb + 16

• G1 GC
– AddressOf(a) == 0x6c7200000
– AddressOf(b) == 0x6c7500000
– AddressOf(b) − AddressOf(a) == 3Mb
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Demo 1: 4K-aliasing

HW uses 12 lower bits of address to detect Store Buffer conflicts.

• address difference 4K (12 bit)

• “Load” can’t bypass “Store”

• “Store Forwarding” can’t help - different addresses.

HW recovery:
– wait until “Store” is finished
– “clear pipeline” in case of speculation
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Demo 1: arraycopy trace

text

Load A;
Store B;

Load A + 32;
Store B + 32;

Load A + 64;
Store B + 64;

...
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Demo 1: arraycopy trace

B == A + 2M + 16;

Load A;
Store A + 2M + 16;

Load A + 32;
Store A + 2M + 48;

Load A + 64;
Store A + 2M + 80;

...
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Demo 1: arraycopy trace

B == A + 2M + 16;

address % 4096
Load A; 0
Store A + 2M + 16; 16

Load A + 32; 32
Store A + 2M + 48; 48

Load A + 64; 64
Store A + 2M + 80; 80

...

4K-aliasing
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Demo 1: 1K copying
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Demo 1: 1K copying

Everything fine
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Demo 1: 1K copying

Everything fine

Misaligned access
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Demo 1: 1K copying

Everything fine

Misaligned access

”4K-aliasing”
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Demo 1: too many details
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Demo 1: It’s not the end

turned on ”Large Pages”
addresses difference 1M
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Demo 1: All together

Data copying performance depends on
how data located in memory

• Line split

• Page split

• 4K-aliasing

• ”1M & large pages aliasing” (still didn’t find an explanation)
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Conclusion
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To read!

• “What Every Programmer Should Know About Memory”
Ulrich Drepper

• “Computer Architecture: A Quantitative Approach”
John L. Hennessy, David A. Patterson

• CPU vendors documentation

• http://www.agner.org/optimize/
• etc.
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Thank you!
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Q & A ?
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