
Copyright © 2018, Oracle and/or its afliates. All rights reserved.

“Quantum” Performance Effects:
Beyond The Core

Sergey Kuksenko

Java Platform Group, Oracle

October, 2018

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product directon. It is intended for
informaton purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functonality, and should not be relied upon
in making purchasing decisions. The development, release, tming, and pricing of any
features or functonality described for Oracle’s products may change and remains at the
sole discreton of Oracle Corporaton.

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

About me

• Java/JVM Performance Engineer at Oracle, @since 2010

• Java/JVM Performance Engineer, @since 2005

• Java/JVM Engineer, @since 1996

3

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

System Under Test

• Intel® Core� i5-5300U [2.3 GHz] 1x2x2
– μarch: Haswell
– launched: Q1’2015s

• OS: Xubuntu 18.04 (64-bits) (4.15.0-36-generic)

• Java 8 (64-bits)

• Java 11 (64-bits)

4

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo code

https://github.com/kuksenko/quantum2

• Required: JMH (Java Microbenchmark Harness)
– http://openjdk.java.net/projects/code-tools/jmh/

5

https://github.com/kuksenko/quantum2
http://openjdk.java.net/projects/code-tools/jmh/

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo code

https://github.com/kuksenko/quantum2

• Required: JMH (Java Microbenchmark Harness)
– http://openjdk.java.net/projects/code-tools/jmh/

5

https://github.com/kuksenko/quantum2
http://openjdk.java.net/projects/code-tools/jmh/

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: How to copy 2 Mbytes.

6

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1

int[] a = new int[512*1024];
int[] b = new int[512*1024];

@Benchmark
public void arraycopy() {

System.arraycopy(a, 0, b, 0, a.length);
}

@Benchmark
public void reversecopy() {

for(int i = a.length - 1; i >= 0; i--) {
b[i] = a[i];

}
}

740 μs

300 μs
??

* Using Java 8

7

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1

int[] a = new int[512*1024];
int[] b = new int[512*1024];

@Benchmark
public void arraycopy() {

System.arraycopy(a, 0, b, 0, a.length);
}

@Benchmark
public void reversecopy() {

for(int i = a.length - 1; i >= 0; i--) {
b[i] = a[i];

}
}

740 μs

300 μs
??

* Using Java 8

7

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Conclusions?

• Oracle engineers - rubbish!

– I know how to copy faster!

8

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Conclusions?

• Oracle engineers - rubbish!

– I know how to copy faster!

8

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Shared results within team

• What I got:

– arraycopy vs reversecopy: 740 vs 300 μs

• What Bob got (on some MacBook Pro):

– arraycopy vs reversecopy: 190 vs 185 μs

• What Alice got (she already migrated to JDK11):

– arraycopy vs reversecopy: 270 vs 280 μs

• What if copy less data ”2Mbytes - 32 bytes”:

– arraycopy vs reversecopy: 280 vs 720 μs

9

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Shared results within team

• What I got:

– arraycopy vs reversecopy: 740 vs 300 μs

• What Bob got (on some MacBook Pro):

– arraycopy vs reversecopy: 190 vs 185 μs

• What Alice got (she already migrated to JDK11):

– arraycopy vs reversecopy: 270 vs 280 μs

• What if copy less data ”2Mbytes - 32 bytes”:

– arraycopy vs reversecopy: 280 vs 720 μs

9

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Shared results within team

• What I got:

– arraycopy vs reversecopy: 740 vs 300 μs

• What Bob got (on some MacBook Pro):

– arraycopy vs reversecopy: 190 vs 185 μs

• What Alice got (she already migrated to JDK11):

– arraycopy vs reversecopy: 270 vs 280 μs

• What if copy less data ”2Mbytes - 32 bytes”:

– arraycopy vs reversecopy: 280 vs 720 μs

9

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Shared results within team

• What I got:

– arraycopy vs reversecopy: 740 vs 300 μs

• What Bob got (on some MacBook Pro):

– arraycopy vs reversecopy: 190 vs 185 μs

• What Alice got (she already migrated to JDK11):

– arraycopy vs reversecopy: 270 vs 280 μs

• What if copy less data ”2Mbytes - 32 bytes”:

– arraycopy vs reversecopy: 280 vs 720 μs

9

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

spent a billion on research

• MacOS doesn’t support ”Large Pages”!

– Ubuntu - ”Transparent Huge Pages”

• G1 is default GC since Java 9!

– Java 8 default GC - ”ParallelOld”

Conclusions:
• Large Pages - Rubbish!

• G1 GC - Cool!

10

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

spent a billion on research

• MacOS doesn’t support ”Large Pages”!

– Ubuntu - ”Transparent Huge Pages”

• G1 is default GC since Java 9!

– Java 8 default GC - ”ParallelOld”

Conclusions:
• Large Pages - Rubbish!

• G1 GC - Cool!

10

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

spent a billion on research

• MacOS doesn’t support ”Large Pages”!

– Ubuntu - ”Transparent Huge Pages”

• G1 is default GC since Java 9!

– Java 8 default GC - ”ParallelOld”

Conclusions:
• Large Pages - Rubbish!

• G1 GC - Cool!

10

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

To Be Continued ...

11

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: How many data?

12

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: The Last Jedi Refactoring

public class MyData {

private byte[] bytes;
private int length;

public MyData(int length) {
this.bytes = new byte[length];
this.length = length;

}

public int length() { return length; }

public byte[] bytes() { return bytes; }
}

13

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: dataSize(MyData)

MyData[] data = new MyData[256];

@Setup
public void setup() {

Random rnd = new Random();
Arrays.setAll(data, i -> new MyData(512 * 1024 + rnd.nextInt(64 * 1024)));

}

@Benchmark
public int dataSize() {

int s = 0;
for (MyData a : data) {

s += a.length();
}
return s;

}

14

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: dataSize(byte[])

byte[][] data = new byte[256][];

@Setup
public void setup() {

Random rnd = new Random();
Arrays.setAll(data, i -> new byte[512 * 1024 + rnd.nextInt(64 * 1024)]);

}

@Benchmark
public int dataSize() {

int s = 0;
for (byte[] a : data) {

s += a.length;
}
return s;

}

15

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: results (Java 8)

DataSize(MyData) 145 ns
DataSize(byte[]) 200 ns

What if turn on G1? (-XX:+UseG1GC)

DataSize(MyData) 145 ns
DataSize(byte[]) 13045 ns

?

???

16

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: results (Java 8)

DataSize(MyData) 145 ns
DataSize(byte[]) 200 ns

What if turn on G1? (-XX:+UseG1GC)

DataSize(MyData) 145 ns
DataSize(byte[]) 13045 ns

?

???

16

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: results (Java 8)

DataSize(MyData) 145 ns
DataSize(byte[]) 200 ns

What if turn on G1? (-XX:+UseG1GC)

DataSize(MyData) 145 ns
DataSize(byte[]) 13045 ns

?

???

16

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: results

What if turn off ”Large Pages”?

ParallelOld GC:
DataSize(MyData) 145 ns
DataSize(byte[]) 250 ns

G1 GC:
DataSize(MyData) 145 ns
DataSize(byte[]) 635 ns

??

17

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: Conclusions

Conclusions:
• Large Pages - Rubbish!

• G1 GC - Rubbish!

18

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: Conclusions

Conclusions:
• Large Pages - Rubbish!

• G1 GC - Rubbish!

18

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

To Be Continued ...

19

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Why we are here?

20

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Caches, caches everywhere

21

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Caches in numbers (Intel Core i5-5300U)

L1 - 32K, 8-way, latency: 4 cycles

L2 - 256K, 8-way, latency: 12 cycles

L3 - 3M, 12-way, latency: 35(and more) cycles

- cache line - 64 bytes

22

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: memory access cost.

23

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: walking on memory

Node root;

@Benchmark
@OperationsPerInvocation(COUNT)
public int walk() {

return forward(root, COUNT);
}

public int forward(Node node, int cnt) {
for(int i=0; i < cnt; i++) {

node = node.next;
}
return node.value;

}

24

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: walking on memory

2.2 ns

5.2 ns

15.4 ns

35 ns

25

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: walking on memory

What about HW prefetching?

26

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: different mix

27

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: different mix

28

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: different mix

2.7x

29

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: different mix

4x

30

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 3: different mix

12.6x

31

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: to split or not to split?

32

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Good old Unsafe!
Unsafe UNSAFE;

long from; // page alignment

@Param({"-8", "-4", "-2", "0", "2", "4", "8" })
int offset; // offset in bytes

@Benchmark
public long getlong() {

return UNSAFE.getLong(a, from + offset);
}

@Benchmark
public void putlong() {

UNSAFE.putLong(a, from + offset, 42L);
}

33

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Results

offset getlong putlong
-8 5.0 1.8
-4 19.1 17.8
0 5.0 1.8
60 5.2 2.5
64 5.0 1.8

time, ns/op

unaligned data:

Page Split!

Line Split!

34

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Results

offset getlong putlong
-8 5.0 1.8
-4 19.1 17.8
0 5.0 1.8
60 5.2 2.5
64 5.0 1.8

time, ns/op

unaligned data:

Page Split!

Line Split!

34

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Misalignment

But wait!

Java doesn’t have misaligned data!

There are no misaligned data,

but there are misaligned operations.

35

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Misalignment

But wait!

Java doesn’t have misaligned data!

There are no misaligned data,

but there are misaligned operations.

35

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Misalignment

Java misaligned access:
• Unsafe/VarHandle

– Buffers

– Offheap

• SIMD instructions (SSE, AVX ...)

– HotSpot intrinsics (System.arraycopy, Arrays.fill ...)
– Automatic vectorization

36

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Arrays.fill

int from; // alignment to page boundary

int size;

int offset;

byte[] a;

@Benchmark
public void fill() {

Arrays.fill(a, from + offset, from + offset + size, (byte)42);
}

37

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Arrays.fill, 512 bytes

38

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 4: Arrays.fill, 512 bytes

39

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 5: upside down

40

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 5: matrix transpose

int size;

double[][] matrix = new double[size][size];

@Benchmark
public void transpose() {

for (int i = 1; i < size; i++) {
for (int j = 0; j < i; j++) {

double tmp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = tmp;

}
}

}

41

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 5: results (NxN)

N
N+0

88 μs

N+1

350 μs

N+2

94 μs

N+3 80 μs

42

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 5: results (NxN)

N
N+0

88 μs

N+1

350 μs

N+2 94 μs
N+3 80 μs

42

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 5: results (NxN)

N
N+0 88 μs
N+1

350 μs

N+2 94 μs
N+3 80 μs

42

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 5: results (NxN)

N
N+0 88 μs
N+1 350 μs
N+2 94 μs
N+3 80 μs

42

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 5: results (NxN)

N
253 88 μs
254 350 μs
255 94 μs
256 80 μs

42

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 5: matrix transpose

43

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Cache Associativity

44

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Critical Stride

〈Crtc Strde〉 = 〈Cche Sze〉
〈Assoctty〉

• L1 (32K, 8-way) ⇒ 4K

• L2 (256K, 8-way) ⇒ 32K

• L3 (3M, 12-way) ⇒ 256K

45

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 2: How many data?(cont.)

46

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

”critical stride” hit

Let’s count:

• G1 GC
– all arrays are aligned to 1M (256K, 32K, 4K)

• ParallelOld GC
– 256 arrays ⇒ 254 different ”index sets” в L3
– 256 arrays ⇒ 251 different ”index sets” в L2
– 256 arrays ⇒ 62 different ”index sets” в L1

– number of hits to L1 index sets:
10, 9, 8, 8, 8, 7, 7...

47

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 6: the rich get richer

48

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 6: Walking dead threads

@Benchmark
@Group("pair")
@OperationsPerInvocation(COUNT)
public int bob() {

return forward(root, COUNT);
}

@Benchmark
@Group("pair")
@OperationsPerInvocation(COUNT)
public int alice() {

return forward(root, COUNT);
}

Each thread has it’s own root
and independent data.

49

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 6: 128K per thread

Iteration 1:
bob: 5.246 ns/op
alice: 5.241 ns/op

Iteration 2:
bob: 5.254 ns/op
alice: 5.272 ns/op

Iteration 3:
bob: 5.233 ns/op
alice: 5.244 ns/op

Iteration 4:
bob: 5.244 ns/op
alice: 5.232 ns/op

50

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 6: 1M per thread

Iteration 1:
bob: 14.495 ns/op
alice: 14.614 ns/op

Iteration 2:
bob: 14.289 ns/op
alice: 14.331 ns/op

Iteration 3:
bob: 14.242 ns/op
alice: 14.296 ns/op

Iteration 4:
bob: 14.332 ns/op
alice: 14.332 ns/op

51

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 6: 2M per thread

Iteration 1:
bob: 17.199 ns/op
alice: 48.845 ns/op

Iteration 2:
bob: 46.777 ns/op
alice: 20.850 ns/op

Iteration 3:
bob: 17.046 ns/op
alice: 48.686 ns/op

Iteration 4:
bob: 46.422 ns/op
alice: 20.704 ns/op

Fight for LLC!

52

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 6: 2M per thread

Iteration 1:
bob: 17.199 ns/op
alice: 48.845 ns/op

Iteration 2:
bob: 46.777 ns/op
alice: 20.850 ns/op

Iteration 3:
bob: 17.046 ns/op
alice: 48.686 ns/op

Iteration 4:
bob: 46.422 ns/op
alice: 20.704 ns/op

Fight for LLC!

∼ 1 ≤ 〈Tot Workng Set〉
〈LLC sze〉 ≤∼ 2.5

52

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 7: Bytes histogram

53

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 7: count bytes frequency

byte[] source; // SIZE == 16 * K;

@Benchmark
public int[] count1() {

int[] table = new int[256];
for (byte v : source) {

table[v & 0xFF]++;
}
return table;

}

54

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 7: count bytes frequency

byte[] source; // SIZE == 16 * K;

@Benchmark
public int[] count1() {

int[] table = new int[256];
for (byte v : source) {

table[v & 0xFF]++;
}
return table;

}

13.7 μs

54

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 7: count bytes frequency

byte[] source; // SIZE == 16 * K;

@Benchmark
public int[] count1() {

int[] table = new int[256];
for (byte v : source) {

table[v & 0xFF]++;
}
return table;

}

13.7 μs

What if the data is unevenly distributed?

54

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Results

55

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Store Buffer

CPU

L1 Cache

4-5
clocks

56

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Store Buffer

CPU

L1 Cache

4-5
clocks

Store
Buffer

56

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Store Forwarding

Store A;

Load B;

Load A;

57

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Store Forwarding

Store A;

Load B;

Load A;

* Store Buffer

Store A;

57

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Store Forwarding

Store A;

Load B;

Load A;

*

Store Buffer

Store A;

No “B” in Store Buffer
Execute!

even before Store

57

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Store Forwarding

Store A;

Load B;

Load A;*

Store Buffer

Store A;

“A” exists in
Store Buffer What to do?

57

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Hit to “Store Buffer”

• Wait until “Store A” reaches L1 (expensive)

• Take value from Store Buffer (a.k.a. “Store Forwarding”)

58

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Let’s do this

@Benchmark
public int[] count2() {

int[] table0 = new int[256];
int[] table1 = new int[256];
for (int i = 0; i < source.length;) {

table0[source[i++] & 0xFF]++;
table1[source[i++] & 0xFF]++;

}
for (int i = 0; i < 256; i++) {

table0[i] += table1[i];
}
return table0;

}

59

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

... and this
@Benchmark
public int[] count4() {

int[] table0 = new int[256];
int[] table1 = new int[256];
int[] table2 = new int[256];
int[] table3 = new int[256];
for (int i = 0; i < source.length;) {

table0[source[i++] & 0xFF]++;
table1[source[i++] & 0xFF]++;
table2[source[i++] & 0xFF]++;
table3[source[i++] & 0xFF]++;

}
for (int i = 0; i < 256; i++) {

table0[i] += table1[i] + table2[i] + table3[i];
}
return table0;

}

60

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Results

61

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 8: bytes ⇔ int

62

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 8: bytes ⇔ int

ByteBuffer buf = ByteBuffer.allocateDirect(4);

@Benchmark
public int bytesToInt() {

buf.put(0, b0);
buf.put(1, b1);
buf.put(2, b2);
buf.put(3, b3);
return buf.getInt(0);

}

@Benchmark
public int intToBytes() {

buf.putInt(0, i0);
return buf.get(0) + buf.get(1) +

buf.get(2) + buf.get(3);
}

13.2 ns

7.9 ns

63

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 8: bytes ⇔ int

ByteBuffer buf = ByteBuffer.allocateDirect(4);

@Benchmark
public int bytesToInt() {

buf.put(0, b0);
buf.put(1, b1);
buf.put(2, b2);
buf.put(3, b3);
return buf.getInt(0);

}

@Benchmark
public int intToBytes() {

buf.putInt(0, i0);
return buf.get(0) + buf.get(1) +

buf.get(2) + buf.get(3);
}

13.2 ns

7.9 ns

63

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 8: Store Forwarding success

int

byte

byte

byte

byte

Store

Load

Load

Load

Load

64

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 8: Store Forwarding fail

int

byte

byte

byte

byte

Store

Store

Store

Store

Load

65

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: back to arraycopy

66

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: looking into asm

loop: vmovdqu -0x38(%rdi,%rdx,8),%ymm0
vmovdqu %ymm0,-0x38(%rsi,%rdx,8)
vmovdqu -0x18(%rdi,%rdx,8),%ymm1
vmovdqu %ymm1,-0x18(%rsi,%rdx,8)
add $0x8,%rdx
jle loop

loop: vmovdqu -0xc(%r8,%rbx,4),%ymm0
vmovdqu %ymm0,-0xc(%r10,%rbx,4)
add $0xfffffff8,%ebx
cmp $0x6,%ebx
jg loop

22

arraycopy reversecopy

67

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: What about memory layout?

• ParallelOld GC
– AddressOf(a) == 0x76d890628
– AddressOf(b) == 0x76da90638
– AddressOf(b) − AddressOf(a) == 2Mb + 16

• G1 GC
– AddressOf(a) == 0x6c7200000
– AddressOf(b) == 0x6c7500000
– AddressOf(b) − AddressOf(a) == 3Mb

68

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: What about memory layout?

• ParallelOld GC
– AddressOf(a) == 0x76d890628
– AddressOf(b) == 0x76da90638
– AddressOf(b) − AddressOf(a) == 2Mb + 16

• G1 GC
– AddressOf(a) == 0x6c7200000
– AddressOf(b) == 0x6c7500000
– AddressOf(b) − AddressOf(a) == 3Mb

68

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: 4K-aliasing

HW uses 12 lower bits of address to detect Store Buffer conflicts.

• address difference 4K (12 bit)

• “Load” can’t bypass “Store”

• “Store Forwarding” can’t help - different addresses.

HW recovery:
– wait until “Store” is finished
– “clear pipeline” in case of speculation

69

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: arraycopy trace

text

Load A;
Store B;

Load A + 32;
Store B + 32;

Load A + 64;
Store B + 64;

...

70

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: arraycopy trace

B == A + 2M + 16;

Load A;
Store A + 2M + 16;

Load A + 32;
Store A + 2M + 48;

Load A + 64;
Store A + 2M + 80;

...

71

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: arraycopy trace

B == A + 2M + 16;

address % 4096
Load A; 0
Store A + 2M + 16; 16

Load A + 32; 32
Store A + 2M + 48; 48

Load A + 64; 64
Store A + 2M + 80; 80

...

4K-aliasing

72

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: 1K copying

73

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: 1K copying

Everything fine

73

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: 1K copying

Everything fine

Misaligned access

73

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: 1K copying

Everything fine

Misaligned access

”4K-aliasing”

73

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: too many details

74

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: It’s not the end

turned on ”Large Pages”
addresses difference 1M

75

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Demo 1: All together

Data copying performance depends on
how data located in memory

• Line split

• Page split

• 4K-aliasing

• ”1M & large pages aliasing” (still didn’t find an explanation)

76

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Conclusion

77

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

To read!

• “What Every Programmer Should Know About Memory”
Ulrich Drepper

• “Computer Architecture: A Quantitative Approach”
John L. Hennessy, David A. Patterson

• CPU vendors documentation

• http://www.agner.org/optimize/
• etc.

78

http://www.agner.org/optimize/

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Thank you!

79

Copyright © 2018, Oracle and/or its afliates. All rights reserved.

Q & A ?

80

	

