
Michael Demmer

November 6, 2018

Scaling Slack
The Good, The Unexpected, and The Road Ahead

mdemmer@slack-corp.com | @mjdemmer

mailto:mdemmer@slack-corp.com

Me

(Not) This Talk

1. 2016: Monolith

2. 2016-2018: Microservices

3. 2016-2018: Best Practices

4. 2018: Lessons Learned

This Talk

1. 2016: How Slack Worked

2. 2016-2018: Things Got More Interesting

3. 2016-2018: What We Did About It

4. 2018+: Themes and Road Ahead

Slack in 2016

Slack

Workspaces, Channels, Users, and more

Duff
Beer

Oceanic
Airlines

Delos

A workspace logically contains all channels and messages, as well as users, emoji, bots,
and more. All interactions occur within the workspace boundary.

us_east_1

Acme
Corp

#brainstorming
#proj-roadrunner
#marketing
…

@alice
@bob
@carol
...

User Base
4M Daily Active Users

Largest Organizations
>10,000 Active Users

Connectivity
2.5M peak simultaneous connected
Avg 10 hrs/day

Engineering Style
Conservative, Pragmatic, Minimal
Most systems > 10 year old technology

Slack Facts (2016)

us_east_1

How Slack Works (2016)

RTM ServiceRTM ServiceMessage Server
(Java)

WebappWebappWebapp
(PHP)

RTM
Service

RTM
Service
Message

Proxy

us_west_1

Client

Websocket

HTTP API Calls

Job
Queue

MySQL
MySQL

Client / Server Flow

Initial login:

● Download full workspace model
with all channels, users, emoji, etc.

● Establish real time websocket

Webapp
(PHP)

Message
Proxy

1: rtm.start

2: prefs: {...},
 users: {...},
 channels: {...},
 emoji: {...},
 ms: “ms1.slack-msgs.com”

3:
web

soc
ket

 co
nne

ct

Client / Server Flow

Initial login:

● Download full workspace model
with all channels, users, emoji, etc.

● Establish real time websocket

While connected:

● Push updates via websocket

● API calls for channel history,
message edits, create channels, etc.

Webapp
(PHP)

Message
Proxy

reactions.add

{me
ssa

ge:
 ..

.}

Sharding And Routing

Workspace Sharding

● Assign a workspace to a DB
and MS shard at creation

● Metadata table lookup for
each API request to route

Mains

RTM
Service

RTM
Service
Message
Servers

MySQL
Shards

Webapp
(PHP)

selec
t * f

rom t
eams

 whe
re id

=1234

{id:
1234

, do
main

:dem
mer,

 db_
shar

d:35
, ms

_sha
rd:1

1, .
..}

Sharding And Routing

Workspace Sharding

● Assign a workspace to a DB
and MS shard at creation

● Metadata table lookup for
each API request to route

“Herd of Pets”

● DBs run in active/active pairs
with application failover

● Service hosts are addressed in
config and manually replaced

Mains

RTM
Service

RTM
Service
Message
Servers

MySQL
Shards

Webapp
(PHP)

Server Experience

Implementation model is straightforward,
easy to reason about and debug.

● All operations are workspace scoped

● Horizontally scale by adding servers

● Few components or dependencies

Why This Worked

Client Experience

Data model lends itself to a seamless, rich
real-time client experience.

● Full data model available in memory

● Updates appear instantly

● Everything feels real time

Things Get More Interesting...

Things Get More Interesting

 Product Model

Size and Scale

Slack Growth

User Base
>8M Daily Active Users

Largest Organizations
>125,000 Active Users

Connectivity
>7M peak simultaneous connected
Avg 10 hrs/day

Engineering Style
Still pragmatic, but embrace complexity
where needed to solve hardest problems

Slack Facts (2018)

User Base
>8M Daily Active Users

Largest Organizations
>125,000 Active Users

Connectivity
>7M peak simultaneous connected
Avg 10 hrs/day

Engineering Style
Still pragmatic, but embrace complexity
where needed to solve hardest problems

Slack Facts (2018)

2x
10x !

3x

Change the Model

Duff
Beer

Oceanic
Airlines

Delos

A workspace logically contains all channels and messages, as well as users, emoji, bots,
and more. All interactions occur within the workspace boundary.

us_east_1

Acme
Corp

#brainstorming
#proj-roadrunner
#marketing
…

@alice
@bob
@carol
...

Change the Model

Acme
Corp

Duff
Beer

Oceanic
Airlines

Delos

Wayne
Enterprises

Wayne
Shipping

Wayne
Finance

Wayne
Security

EnterpriseWorkspaces

Change the Model

Acme
Corp

Duff
Beer

Oceanic
Airlines

Agents of
SHIELD

Stark
Industries

Delos

Wayne
Enterprises

Wayne
Shipping

Wayne
Finance

Wayne
Security

Shared ChannelsWorkspaces Enterprise

Challenges

Recurring Issues

● Large organizations: Boot metadata download is slow and expensive

● Thundering Herd: Load to connect >> Load in steady state

● Hot spots: Overwhelm database hosts (mains and shards) and other systems

● Herd of Pets: Manual operation to replace specific servers

● Cross Workspace Channels: Need to change assumptions about partitioning

So What Did We Do?

What Did We Do

Message
Services

Service
Decomposition

Vitess

Fine-Grained
DB Sharding

Thin
Client
Model

Flannel Cache

What Did We Do

Thin
Client
Model

Flannel Cache

Challenge: Boot Model Explosion

boot_payload_size ~=
 (num_users * user_profile_bytes) +
 (num_channels * (channel_info_size +
 (num_users_in_channel * user_id bytes)))

Users Profiles Channels Total

12 6 KB 1 KB 7 KB

530 140 KB 28 KB 168 KB

4,008 5 MB 2 MB 7 MB

Challenge: Boot Model Explosion

boot_payload_size ~=
 (num_users * user_profile_bytes) +
 (num_channels * (channel_info_size +
 (num_users_in_channel * user_id bytes)))

Users Profiles Channels Total

12 6 KB 1 KB 7 KB

530 140 KB 28 KB 168 KB

4,008 5 MB 2 MB 7 MB

44,030 36 MB 25 MB 59 MB

148,170 78 MB 40 MB 118 MB

us_east_1

Thin Client Model

RTM ServiceRTM ServiceMessage Server

WebappWebappWebapp

RTM
Service

RTM
Service
Message

Proxy

Client

Websocket

HTTP API Calls

Job
Queue

MySQL
MySQL

us_west_1

RTM
Service

RTM
Service
Flannel
Cache

us_west_1

us_east_1

Thin Client Model

RTM ServiceRTM ServiceMessage Server

WebappWebappWebapp

RTM
Service

RTM
Service
Message

Proxy

us_west_1

Client

Websocket

HTTP API Calls

Job
Queue

MySQL
MySQL

Consul

Thin Client Model

RTM
Service

RTM
ServiceFlannel

Flannel Service
Globally distributed edge cache

Minimize Workspace Model
Much smaller boot payload

Routing
Workspace affinity for cache locality

Query API
Fetch unknown objects from cache

Cache Updates
Proxy subscription messages to clients

Websocket

Thin Client Model

Unblock Large Organizations

Adapting clients to a lazy load model was a critical change to enable Slack for
large organizations.

● Huge reduction in payload times on initial connect

● Flannel efficiently responds to > 1+ million queries per second

● Adds challenges of cache coherency and reconciling business logic

What Did We Do

Vitess

Fine-Grained
DB Sharding

Challenge: Hot Spots & Manual Repair

RTM
Service

RTM
Service
Flannel
Cache

us_west_1

us_east_1

Vitess

RTM ServiceRTM ServiceMessage Server

WebappWebappWebapp

RTM
Service

RTM
Service
Message

Proxy

us_west_1

Client

Websocket

HTTP API Calls

Job
Queue

MySQL
MySQL

Consul

RTM
Service

RTM
Service

us_west_1

us_east_1

Vitess

RTM ServiceRTM ServiceMessage Server

WebappWebappWebapp

RTM
Service

RTM
Service
Message

Proxy

us_west_1

Client

Websocket

HTTP API Calls

Job
Queue

MySQL
MySQL

VtTablet
MySQL

VtGateVtGateVtGate

Flannel
Cache

Consul

Vitess

VtTablet
MySQL

VtGateVtGateVtGate

Flexible Sharding
Vitess manages per-table sharding policy

Topology Management
Database servers self-register

Single Master
Using GTID and semi-sync replication

Failover
Orchestrator promotes a replica on failover

Resharding Workflows
Automatically expand the cluster

WebappWebappWebapp

Vitess

Fine-Grained Sharding

Migrating to a channel-sharded / user-sharded data model helps mitigate hot
spots for large teams and thundering herds.

● Retains MySQL at the core for developer / operations continuity

● More mature topology management and cluster expansion systems

● Data migrations that change the sharding model take a long time

What Did We Do

Message
Services

Service
Decomposition

Challenge: Shared Channels?

Agents of
SHIELD

Stark
Industries

Message Server

Message Server

Challenge: Shared Channels?

Agents of
SHIELD

Stark
Industries

Message Server

Message Server

RTM
Service

RTM
Service
Flannel
Cache

us_west_1

us_east_1

Message Server to Services

RTM ServiceRTM ServiceMessage Server

WebappWebappWebapp

RTM
Service

RTM
Service
Message

Proxy

us_west_1

Client

Websocket

HTTP API Calls

Job
Queue

MySQL
MySQL

VtTablet
MySQL

VtGateVtGateVtGate

Consul

us_east_1

Message Server to Services

Client
WebappWebappWebapp

Job
Queue

VtTablet
MySQL

VtGateVtGateVtGate

RTM
Service

RTM
Service
Channel
Server

RTM
Service

RTM
Service
Gateway

Server RTM
Service

RTM
Service
Presence

Server
RTM

Service
RTM

Service
Message

Server
VtGateVtGateAdmin

Server

RTM
Service

RTM
Service

us_west_1

Consul

MySQL
MySQL

Flannel
Cache

Websocket

HTTP API Calls

Gateway Server
Websocket termination and subscriptions

Admin Server
Cluster management and routing

Presence Server
Store and distribute presence state

Channel Server
Pub/Sub fanout with 5 minute buffering

Message Server to Services

(Legacy) Message Server
Used for reminders, Google Calendar
integration

Channel
Server

Gateway
Server

Presence
Server

Message
Server

Admin
Server

Message Server to Services

Generic Messaging Services

Everything is a pub/sub “channel”, including message channels as well as
workspace / user metadata channels.

● Clients / Flannel subscribes to updates for all relevant objects

● Each Message Service has dedicated clear roles and responsibilities

● Self-healing cluster orchestration to maintain availability

● Each user session now depends on many more servers being available

What Did We Do

Message
Services

Service
Decomposition

Vitess

Fine-Grained
DB Sharding

Lazy
Client

Flannel Cache

Some Themes...

Topology Management

For each of these projects (and more), architecture evolved
from hand-configured server hostnames to a discovery mesh.

● Enables self-registration and automatic cluster repair

● Adds reliance on service discovery infrastructure (consul)

● Led to changes in service ownership and on-call rotation

Herd of Pets to Service Mesh

Scatter May Be Harmful

Fine-Grained Sharding

Migrating from a workspace-scope to channel or user scoped spreads out the
load but adds a requirement to sometimes scatter/gather.

● Removes artificial couplings on back end systems

● Teams are less isolated, so need extra protections from noisy neighbors

● When scattering, clients should tolerate partial results and retry

● Tail latencies can dominate performance when fetching from many

Deprecation Challenges

As hard as it is to add new services into production under load,
it’s proven as hard if not harder to remove old ones.

● With few exceptions, all 2016 services still in production

● Need to support legacy clients and integrations

● Data migrations need application changes takes time

Deploying Is Only The Beginning

Performance Short Game

Architectural rework is necessary, but less glamorous
performance optimizations pay huge dividends

● Simple approaches to caching or refactoring

● Client-side jitter to spread out load

● Eliminate unnecessary methods / queries

Grinding It Out

us_east_1

How Slack Works (2016)

RTM ServiceRTM ServiceMessage Server
(Java)

WebappWebappWebapp
(PHP)

RTM
Service

RTM
Service
Message

Proxy

us_west_1

Client

Websocket

HTTP API Calls

Job
Queue

MySQL
MySQL

us_east_1

How Slack Works (2018)

Client
WebappWebappWebapp

Job
Queue

VtTablet
MySQL

VtGateVtGateVtGate

RTM
Service

RTM
Service
Channel
Server

RTM
Service

RTM
Service
Gateway

Server RTM
Service

RTM
Service
Presence

Server
RTM

Service
RTM

Service
Message

Server
VtGateVtGateAdmin

Server

RTM
Service

RTM
Service

us_west_1

Consul

MySQL
MySQL

Flannel
Cache

Websocket

HTTP API Calls

We’re Not Done Yet

Storage POPs
Geographically distributed back end

Services Services Services
Decompose the monolith and improve
service mesh.

Job Queue
Revamp the asynchronous task queue

Resiliency
Degraded functionality when subsystems are
unavailable

Eventual Consistency
Change API expectations

Network Scale
Stay ahead of the growth curve

Thank You!

55

BACKUP

us_east_1

How Slack Works (c 2018)

Client

Websocket

HTTP API Calls WebappWebappWebapp

Job
Queue

VtTablet
MySQL

VtGateVtGateVtGate

RTM
Service

RTM
Service
Channel
Server

RTM
Service

RTM
Service
Gateway

Server RTM
Service

RTM
Service
Presence

Server
RTM

Service
RTM

Service
Message

Server
VtGateVtGateAdmin

Server

RTM
Service

RTM
Service

us_west_1

Consul

MySQL
MySQL

Flannel
Cache

Client Connections
Websocket termination, user / connection state
and subscriptions

Webapp Actions
Communication/routing from Webapp →
Message Server for channel messages

Presence Indications
User presence state, updates & presence
subscriptions - that little green indicator

Subscriptions and Fanout
Last 5 minutes of history, as well as initial
subscription and fanout of messages

Message Server

Scheduled Messages
Used for reminders, Google Calendar
integration RTM ServiceRTM ServiceMessage Server

(Java)

Team Sharded MySQL

Team Sharding
Application-defined sharding policy routes all
queries to the team shard

Manual Topology Management
Operator-managed host configuration is
injected into application code

Active Master / Master
Both sides are writable masters, biases
for availability with best-effort
consistency

Application Retry Failover
If preferred side is unavailable, connect to the
backup side and try again

Split Shards
Manually orchestrated switchover to
divide some teams to new host.

MySQL
MySQL

WebappWebappWebapp

QCon 2016 QCon 2017

