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Containers / VMs 

Microservices

Elastic Cloud

Frameworks

Scalable thread pool like Fork-Join

Scalable processors
kubernetes

FaaS

* All trademarks are the property of their respective owners

Serverless
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Performance at scale 

Scaling out a “poor single node” 
performance is waste of $$$$$!  



Scaling out an “optimal single node” performance 
requires coordination like an orchestra ! 









At scale, even 1% gain worth $$$$$ ! 
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Agenda
Not being covered today:

FaaS (Function as a Service) or Serverless or Microservices etc. 

Being covered:

Modelling a complex backend of e-commerce enterprise (5 minutes)

Scaling from the beginning (5 minutes)

Architecture  

Telemetry / observation points and metrics

Interesting data from scale up and scale out (15 minutes)

Take away(s) (5 minutes)
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Architecture: Modelling backend of e-commerce enterprise

Flexibility of modules like SM, SP and different type of data 

SM 1
Inventory

HQ
Customer Data

Receipts
Data Analytics

SP 1 SP 2

Point of sale, 
employees,
Reports etc.

Super Market(s)        Suppliers 

Processing
SM 2

Inventory
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Scale up 

More modules like SM, SP, inventory, user data etc.

HQ

Customer Data
Receipts 

Data Analytics

SP 2

Point of sale, 
employees,
Reports etc.

Super Market(s)        Suppliers 

Processing
SM n

InventorySM 3
InventorySM 2

InventorySM 1
Inventory

SP 1

SP m
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Scale out

SM 1

HQ

SM 2 SP 1 SP 2
Region 1
(USA)

TxI

SM 1

HQ

SM 2 SP 1 SP 2

TxI

Region 2
(Canada)

SM 1

HQ

SM 2 SP 1 SP 2

Region n
(abc)

TxI

Communication increases 
with number of region(s)
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Why should anyone care ?

VM (s)

OS (s)

HW, Networking, etc.

Application (s) Full access

Limited access / 

NO access
Expected benchmark 
behavior can help in 

performance estimation 
/ debug / scaling  

Benchmark
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Measuring response time

Be sure what you’re measuring is the response time you’re interested in

Transaction A

Transaction B

Transaction C
Request
Queue

Transaction
Queue

Response
Queue

Executor Thread Pool

Requests Responses

Measuring response time from request made to response received?
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One typical run 

10 sec

1 sec

100ms

10ms

1ms
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CPU % utilization as load increases
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HW infrastructure focus

 Stand alone or #blade servers with network

 Racks or #blade servers with high bandwidth network

 ### of CPUs / memory as SINGLE OS image 

X  #blades with offload to GPU, FPGA etc. (Local or Shared )
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SW architecture for scaling 

All modules can be deployed within one instances or separately !

SM 1
Inventory

HQ
Customer Data

Receipts
Data Analytics

SP 1 SP 2

Super Market(s)        Suppliers 

Processing
SM 2

Inventory

• Modules

• Thread pools

• Queues

• Data structures

• Communication

• Telemetry and Metrics 
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Scale up: modules and thread pools

• Cost of modularity similar to microservices, 

• Serialization / deserialization

• Data sharing

• Fork-Join thread pools 

• Auto scaling with bounded values
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Scale up: queues and data structures

• Queue design very critical  

• Different type of requests in separate queues

• Important messages not waiting in long queues

• Data structures

• Concurrency with scaling important at high throughput
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Scale out: scale up + communication + telemetry

• Telemetry and efficient aggregation 

• Low latency and high bandwidth communication

• Node topology deployment strategy   

Node 1             Node 2                   Node n
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Problem Statement

Scaling Up a System is Not Easy …
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So What Do We Do?

Divide Distribute and conquer! 

Advantages:

• Cheaper commodity hardware

• Deploy Nodes/VMs/Containers/Infrastructure as needed

Potential issues to consider – orchestration/networking!

Scale Out!
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Networking Traffic: 

0% Remote vs 50% Remote

specjbb.sm.replenish.localPercent 100 vs 50
specjbb.customer.RemoteCustomerShare 0.0 vs 0.2

2 Backends
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0% Remote 50% Remote

Remote traffic effects on SLA

Network Traffic Comparison

Max jOPS = 49166 Max jOPS = 31413

Critical jOPS = 17684 Critical jOPS = 9317
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Problem Statement

Scaling Up a System is Not Easy …
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Problem Statement

Some brave-hearts still attempt it! 

Potential issues to consider – SLA constraints

Scaling Up a System is Not Easy …

Why? Approach? How?

To increase injection 
rate/transactions/users/clients

HW
Add memory to provide more 

heap

SW
Choose a different Garbage 

Collection algorithm

To optimize CPU cores/SMT usage SW Optimize task scheduler
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Scenarios That We Will Cover Today

Scenarios Why? How?

Scenario 1 Increase injection rate Increase heap

Scenario 2 Increase injection rate
Choose a different Garbage 

Collection algorithm

Scenario 3
Optimize CPU cores/SMT 

usage
Optimize task scheduler
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Increase 
Injection Rate 
and Heap Sizes

Check your SLA Constraints!

Scenario 1
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Heap Comparison: 10GB vs 30GB @ 10K Injection Rate
How heap size affects your SLAs

10GB 30GB
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Heap Comparison: 10GB vs 30GB @ 30K Injection Rate
How heap size affects your SLAs

10GB 30GB
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Heap Comparison: 10GB vs 30GB @ 50K Injection Rate
How heap size affects your SLAs

10GB 30GB
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Increase 
Injection Rate 
by Choosing a 
Better Suited 
GC Algorithm  

Check your SLA Constraints!

Scenario 2
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Comparing GC Pauses

Parallel GC

G1 GC

GC Comparison: @ 10GB Heap @ 50K Injection Rate
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Parallel GCG1 GC

Comparing GC Overhead and Worst Case Pauses

GC Comparison: @ 10GB Heap @ 50K Injection Rate
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Increase CPU 
Usage by 
Optimizing Task 
Scheduler

Check your SLA Constraints!

Scenario 3
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FJP == SMT count FJP = 2xSMT count

Fork Join Pool Scheduler Comparison: 1x vs 2x (of SMT)
Optimizing CPU usage

Max jOPS = 49700
Max jOPS = 52067

Critical jOPS = 24456 Critical jOPS = 25155
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FJP == SMT count FJP = 2xSMT count

Fork Join Pool Scheduler Comparison: 1x vs 2x (of SMT)
Optimizing CPU usage

Max jOPS = 49700
Max jOPS = 52067

Critical jOPS = 24456 Critical jOPS = 25155
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Scaling Up a System Can Be Easy …

Summary - If ifs and buts were candies and nuts …

If… When…

We check our SLA constraints

Increasing the heap

Choosing GC algorithms

Optimizing CPU usage
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Scaling Up a System Can Be Easy …

Summary - If ifs and buts were candies and nuts …

If… When…

We check our SLA constraints

Increasing the heap

Choosing GC algorithms

Optimizing CPU usage
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Conclusions:  

• Scale UP:

• Telemetry and correlation 

• Estimate of performance gain 

• Footprint and SLA

• Scale OUT

• Telemetry and correlation 

• Cost of orchestration and weigh throughput vs latency

• $$$$$ for scaling out vs. throughput meeting SLA  
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Scale up performance benchmarking  

Scale Up  Scale Out  Away to 
(Telemetry)                             (Hawaii)


