
© 2017 Arm Limited

Anil Kumar –

Runtime Performance Architect @Intel,

OSG Java Chair
Monica Beckwith –

Runtime Performance Architect @Arm,

Java Champion

Scaling Up
Performance

Benchmarking
-with SPECjbb2015

© 2017 Arm Limited 2

Containers / VMs

Microservices

Elastic Cloud

Frameworks

Scalable thread pool like Fork-Join

Scalable processors
kubernetes

FaaS

* All trademarks are the property of their respective owners

Serverless

© 2017 Arm Limited 3

Performance
Engineering
1970 - 2020

© 2017 Arm Limited 4

Performance at scale

Scaling out a “poor single node”
performance is waste of $$$$$!



Scaling out an “optimal single node” performance
requires coordination like an orchestra !









At scale, even 1% gain worth $$$$$!

© 2017 Arm Limited 5

Agenda
Not being covered today:

FaaS (Function as a Service) or Serverless or Microservices etc.

Being covered:

Modelling a complex backend of e-commerce enterprise (5 minutes)

Scaling from the beginning (5 minutes)

Architecture

Telemetry / observation points and metrics

Interesting data from scale up and scale out (15 minutes)

Take away(s) (5 minutes)

© 2017 Arm Limited 6

Architecture: Modelling backend of e-commerce enterprise

Flexibility of modules like SM, SP and different type of data

SM 1
Inventory

HQ
Customer Data

Receipts
Data Analytics

SP 1 SP 2

Point of sale,
employees,
Reports etc.

Super Market(s) Suppliers

Processing
SM 2

Inventory

© 2017 Arm Limited 7

Scale up

More modules like SM, SP, inventory, user data etc.

HQ

Customer Data
Receipts

Data Analytics

SP 2

Point of sale,
employees,
Reports etc.

Super Market(s) Suppliers

Processing
SM n

InventorySM 3
InventorySM 2

InventorySM 1
Inventory

SP 1

SP m

© 2017 Arm Limited 8

Scale out

SM 1

HQ

SM 2 SP 1 SP 2
Region 1
(USA)

TxI

SM 1

HQ

SM 2 SP 1 SP 2

TxI

Region 2
(Canada)

SM 1

HQ

SM 2 SP 1 SP 2

Region n
(abc)

TxI

Communication increases
with number of region(s)

© 2017 Arm Limited 9

Why should anyone care ?

VM (s)

OS (s)

HW, Networking, etc.

Application (s) Full access

Limited access /

NO access
Expected benchmark
behavior can help in

performance estimation
/ debug / scaling

Benchmark

© 2017 Arm Limited 10
10

Measuring response time

Be sure what you’re measuring is the response time you’re interested in

Transaction A

Transaction B

Transaction C
Request
Queue

Transaction
Queue

Response
Queue

Executor Thread Pool

Requests Responses

Measuring response time from request made to response received?

© 2017 Arm Limited 11

One typical run

10 sec

1 sec

100ms

10ms

1ms

© 2017 Arm Limited 12

CPU % utilization as load increases

0

10

20

30

40

50

60

70

80

90

100

CPU Utilization %

© 2017 Arm Limited 13

HW infrastructure focus

 Stand alone or #blade servers with network

 Racks or #blade servers with high bandwidth network

 ### of CPUs / memory as SINGLE OS image

X #blades with offload to GPU, FPGA etc. (Local or Shared)

© 2017 Arm Limited 14

SW architecture for scaling

All modules can be deployed within one instances or separately !

SM 1
Inventory

HQ
Customer Data

Receipts
Data Analytics

SP 1 SP 2

Super Market(s) Suppliers

Processing
SM 2

Inventory

• Modules

• Thread pools

• Queues

• Data structures

• Communication

• Telemetry and Metrics

© 2017 Arm Limited 15

Scale up: modules and thread pools

• Cost of modularity similar to microservices,

• Serialization / deserialization

• Data sharing

• Fork-Join thread pools

• Auto scaling with bounded values

© 2017 Arm Limited 16

Scale up: queues and data structures

• Queue design very critical

• Different type of requests in separate queues

• Important messages not waiting in long queues

• Data structures

• Concurrency with scaling important at high throughput

© 2017 Arm Limited 17

Scale out: scale up + communication + telemetry

• Telemetry and efficient aggregation

• Low latency and high bandwidth communication

• Node topology deployment strategy

Node 1 Node 2 Node n

© 2017 Arm Limited

Problem Statement

Scaling Up a System is Not Easy …

© 2017 Arm Limited 19

So What Do We Do?

Divide Distribute and conquer!

Advantages:

• Cheaper commodity hardware

• Deploy Nodes/VMs/Containers/Infrastructure as needed

Potential issues to consider – orchestration/networking!

Scale Out!

© 2017 Arm Limited

Networking Traffic:

0% Remote vs 50% Remote

specjbb.sm.replenish.localPercent 100 vs 50
specjbb.customer.RemoteCustomerShare 0.0 vs 0.2

2 Backends

© 2017 Arm Limited 21

0% Remote 50% Remote

Remote traffic effects on SLA

Network Traffic Comparison

Max jOPS = 49166 Max jOPS = 31413

Critical jOPS = 17684 Critical jOPS = 9317

© 2017 Arm Limited

Problem Statement

Scaling Up a System is Not Easy …

© 2017 Arm Limited 23

Problem Statement

Some brave-hearts still attempt it!

Potential issues to consider – SLA constraints

Scaling Up a System is Not Easy …

Why? Approach? How?

To increase injection
rate/transactions/users/clients

HW
Add memory to provide more

heap

SW
Choose a different Garbage

Collection algorithm

To optimize CPU cores/SMT usage SW Optimize task scheduler

© 2017 Arm Limited 24

Scenarios That We Will Cover Today

Scenarios Why? How?

Scenario 1 Increase injection rate Increase heap

Scenario 2 Increase injection rate
Choose a different Garbage

Collection algorithm

Scenario 3
Optimize CPU cores/SMT

usage
Optimize task scheduler

© 2017 Arm Limited

Increase
Injection Rate
and Heap Sizes

Check your SLA Constraints!

Scenario 1

© 2017 Arm Limited 26

Heap Comparison: 10GB vs 30GB @ 10K Injection Rate
How heap size affects your SLAs

10GB 30GB

© 2017 Arm Limited 27

Heap Comparison: 10GB vs 30GB @ 30K Injection Rate
How heap size affects your SLAs

10GB 30GB

© 2017 Arm Limited 28

Heap Comparison: 10GB vs 30GB @ 50K Injection Rate
How heap size affects your SLAs

10GB 30GB

© 2017 Arm Limited

Increase
Injection Rate
by Choosing a
Better Suited
GC Algorithm

Check your SLA Constraints!

Scenario 2

© 2017 Arm Limited 30

Comparing GC Pauses

Parallel GC

G1 GC

GC Comparison: @ 10GB Heap @ 50K Injection Rate

© 2017 Arm Limited 31

Parallel GCG1 GC

Comparing GC Overhead and Worst Case Pauses

GC Comparison: @ 10GB Heap @ 50K Injection Rate

© 2017 Arm Limited

Increase CPU
Usage by
Optimizing Task
Scheduler

Check your SLA Constraints!

Scenario 3

© 2017 Arm Limited 33

FJP == SMT count FJP = 2xSMT count

Fork Join Pool Scheduler Comparison: 1x vs 2x (of SMT)
Optimizing CPU usage

Max jOPS = 49700
Max jOPS = 52067

Critical jOPS = 24456 Critical jOPS = 25155

© 2017 Arm Limited 34

FJP == SMT count FJP = 2xSMT count

Fork Join Pool Scheduler Comparison: 1x vs 2x (of SMT)
Optimizing CPU usage

Max jOPS = 49700
Max jOPS = 52067

Critical jOPS = 24456 Critical jOPS = 25155

© 2017 Arm Limited 35

Scaling Up a System Can Be Easy …

Summary - If ifs and buts were candies and nuts …

If… When…

We check our SLA constraints

Increasing the heap

Choosing GC algorithms

Optimizing CPU usage

© 2017 Arm Limited 30

Scaling Up a System Can Be Easy …

Summary - If ifs and buts were candies and nuts …

If… When…

We check our SLA constraints

Increasing the heap

Choosing GC algorithms

Optimizing CPU usage

© 2017 Arm Limited 36

Conclusions:

• Scale UP:

• Telemetry and correlation

• Estimate of performance gain

• Footprint and SLA

• Scale OUT

• Telemetry and correlation

• Cost of orchestration and weigh throughput vs latency

• $$$$$ for scaling out vs. throughput meeting SLA

© 2017 Arm Limited 37

Scale up performance benchmarking

Scale Up  Scale Out  Away to
(Telemetry) (Hawaii)

