
ELECTRON PRO-TIPS™
@PAULCBETTS (GITHUB, TWITTER)

HI.

HERE'S A FEW THINGS I NOTICE PEOPLE
DOING IN ELECTRON APPS

(THAT MAKE USERS MAD)

MEMORY USAGE
MATTERS

Users get so mad about memory usage. Which is mostly nonsense.

Every conversation I've ever had about Electron memory usage:

Them: IM SO MAD ABOUT MEMORY USAGE

Me: I understand! So, what's the "Commit Charge"
 say in Task Manager? That's the percentage of
 RAM that is actually in-use.

Them: Oh, it's 40%.

...but on the other hand, as Electron Developers, we've got great tools to
do something about this, so we should!

LOAD LESS STUFF

LOAD LESS STUFF

▸ Lots and Lots of DOM Elements
▸ Especially Images
▸ JS Heap

USE REACT OR
VUE

(AND VIRUALIZING LISTS)

LOAD LESS STUFF
▸ Libraries that you load in your app never get unloaded
▸ Bad for startup performance and for memory usage!

USE THE HEAP
PROFILER

DON'T RUN STUFF
IN THE MAIN

PROCESS

but what about...?

NO

WHAT THE MAIN PROCESS IS NOT
▸ "The Backend"

▸ "A Background Thread"
▸ "The Server"

THE MAIN
PROCESS IS FOR
ORCHESTRATION

THE MAIN PROCESS IS FOR ORCHESTRATION
Running code in the main process slows everything else down

Chromium uses IPC internally to do things, such as signaling window
size changes

So when the main thread is busy, your app glitches!

THE MAIN PROCESS IS FOR ORCHESTRATION
ipc.send is asynchronous which is Better, but not enough!

The main process can still do a lot of work as a result of ipc.send, and
block stuff

THE MAIN PROCESS IS FOR ORCHESTRATION
The main process should really only be used to tell other processes

what to do
▸ Sending information between windows
▸ Signalling menu items and dock events

▸ Crash reporting and other APIs that only work in the main process

SO HOW CAN I DO
STUFF THEN??

WHAT IF WE CREATE A BROWSERWINDOW
BUT DIDN'T SHOW IT?

ELECTRON-REMOTE

ELECTRON-REMOTE, DOING WORK FROM THE MAIN
PROCESS

import { createProxyForRemote } from 'electron-remote';

// myWindowJs is now a proxy object
// for myWindow's `window` global object
const myWindowJs = createProxyForRemote(myWindow);

// Functions suffixed with _get
// will read a value
userAgent = await myWindowJs.navigator.userAgent_get()

REQUESTIDLECALLBACK IS
SUPER COOL

REQUESTIDLECALLBACK IS SUPER COOL

Like setTimeout but only runs once the UI is no longer busy

The callback allows you to repeatedly schedule requestIdleCallback to
do work in a loop

Writing App Data in the background is a great place to use
requestIdleCallback

ELECTRON-REMOTE, TASKPOOL
import { requireTaskPool } from 'electron-remote';

const myCoolModule = requireTaskPool(
 require.resolve('./my-cool-module'));

// This method will run synchronously,
// but in a background BrowserWindow process
// so that your app will not block
let result = await myCoolModule.calculateDigitsOfPi(100000);

JUST MAKE AN
HTML PAGE

THIS EXPERIENCE IS A DRAG.

JUST MAKE AN HTML PAGE
Putting a website into an Electron frame is easy, but not great for Users

Offline Mode is way easier

Your app will start Really Fast

Starting with a Desktop Mindset will make your app feel like an app

HTML PAGES ARE MORE SECURE
Designing a hybrid app is Very Security Sensitive, so that you don't

accidentally give Desktop Powers™ to remote content
When all of the code for your app is local, you remove this possibility

altogether
XSS is still extremely important to watch out for!

DON'T RUN WEB SERVERS IN
YOUR APP

DON'T RUN WEB SERVERS IN YOUR APP

...cause like, what if more than one user uses your app?

Your web service now a great way to move data between different users

If you run as Admin, it's now a great way to local EoP

...or if you're really unlucky, have arbitrary websites run Desktop code

USE ELECTRON-FORGE

USE ELECTRON-FORGE

electron-forge handles all of the things you might want to use Express
or Webpack for, like Hot Module Reload

It handles Babel/TypeScript/LESS/Sass via hooking Electron and
compiling on-the-fly during development

electron-forge does all of the packaging and compilation work too

BUT I LIKE WEBPACK!

BUT I LIKE WEBPACK!

Trying to interact with Electron itself gets Weird because now there are
two separate module systems

Native node modules are a pain with Webpack, both at runtime and on
the build side

Packaging becomes way more complex

PERFORMANCE,
BLAHHH

SECURITY,
BORINGGGG

MEMORY,
UGHHHHHH

NODE-RT IS COOL

CALL WIN10 APIS FROM
ELECTRON SUPER EASILY

SOME COMPELLING EXAMPLES:

- Windows.Devices.Display
- Windows.Devices.Geolocation
- Windows.Media.Capture
- Windows.Media.OCR
- Windows.System.Power

WHAT ABOUT MACOS?

¯_(ϑ)_/¯

¯_(ϑ)_/¯

There's no easy way to call macOS APIs from Electron, you have to write
a Native Node Module.

You can do very simple things with node-ffi, but more complicated
things will lead to Segfault City

HOW CAN I FIGURE OUT WHAT
I CAN DO?

THANKS!
@PAULCBETTS (GITHUB, TWITTER)

ELECTRON PRO TIPS
Red Threads:

▸ Performance And Memory Usage Matters
▸ Users Care about Memory Usage, so you should too - you have

great tools to debug it!
▸ Just Load Less Stuff - module load time is super easy to debug in

Perf tools

