The Highs and Lows of Stateful
Containers

Presented by Alex Robinson / Member of the Technical Staff Cockroach LABS
@alexwritescode

GitHub recovering after a widespread outage
caused by networking and database issues

Microsoft reveals train of mistakes that
killed Azure in the South Central US
'Incident’

Thunderbolt and lightning, Azure outage frightening

By Richard Speed 17 Sep 2018 at 18:39 48() SHARE Y

Feb 10,2017 - GitLab ¥

Postmortem of database outage of January 31

Almost all real applications rely on state

When storage systems go down, so do
the applications that use them

Containers are new and different

Change is risky

Great care is warranted when moving
stateful applications into containers

To succeed, you must:

To succeed, you must:
1. Understand your stateful application

To succeed, you must:

1. Understand your stateful application
2. Understand your orchestration system

To succeed, you must:

1. Understand your stateful application
2. Understand your orchestration system
3. Plan for the worst

Let’s talk about stateful containers

* Why would you even want to run stateful applications in containers?
e What do stateful systems need to run reliably?
e \What should you know about your orchestration system?

e What's likely to go wrong and what can you do about it?

My experience with stateful containers

e Worked directly on Kubernetes and GKE from 2014-2016
o Part of the original team that launched GKE
e |ead all container-related efforts for CockroachDB

o Configurations for Kubernetes, DC/OS, Docker Swarm, even Cloud Foundry
o AWS, GCP, Azure, On-Prem
o From single availability zone deployments to multi-region

o Help users deploy and troubleshoot their custom setups

kubernetes '® Cockroach o

Why even bother?

We've been running stateful services for decades

Traditional management of stateful services

1. Provision one or more beefy machines with
large/fast disks

2. Copy binaries and configuration onto machines

3. Run binaries with provided configuration

4. Never change anything unless absolutely

necessary

Traditional management of stateful services

e Pros
o Stable, predictable, understandable
e Cons

o Most management is manual, especially to scale or recover from hardware failures

m And that manual intervention may not be very well practiced

Moving to containers

e (Can you do the same thing with containers?

o Surel
o ...Butthat's not what you'll get by default if you're using any of the common

orchestration systems

So why move state into orchestrated containers?

® The same reasons you'd move stateless applications to containers

O Automated deployment, placement, security, scalability, availability, failure recovery,

rolling upgrades
m Less manual toil, less room for operator error

o Resource isolation

e Avoid separate workflows for stateless vs stateful applications

Challenges of managing state
“Understand your stateful application”

What do stateful systems need?

What do stateful systems need?

e Process management

® Persistent storage

What do stateful systems need?

® Process management
® Persistent storage

e |f distributed, also:

o Network connectivity
o Consistent name/address

o Peerdiscovery

What do stateful systems need?

®* Process management
® Persistent storage

e |f distributed, also:

o Network connectivity
o Consistent name/address

o Peer discovery

What do stateful systems need?

®* Process management
e Persistent storage

e |f distributed, also:

o Network connectivity
o Consistent name/address

o Peer discovery

Managing state in plain Docker containers
“Understand your orchestration system”

Stateful applications in Docker

e Not much to worry about here other than storage

o Never store important data to a container’s filesystem

Stateful applications in Docker

Container Container

Container

Host

2. Data on host filesystem 3. Data in network storage

Stateful applications in Docker

e Don't:
o docker run cockroachdb/cockroach start
e Do:

o docker run -v /mnt/data1l:/data cockroachdb/cockroach start --store=/data

Stateful applications in Docker

e Don't:

o docker run cockroachdb/cockroach start
e Do:

o docker run -v /mnt/datal:/data cockroachdb/cockroach start --store=/data
e And in most cases, you'll actually want:

o docker run -p 26257:26257 -p 8080:8080 -v /mnt/datal:/data

cockroachdb/cockroach start --store=/data

Stateful applications in Docker

e Hardly any different from running things the traditional way
e Automated - binary packaging/distribution, resource isolation

e Manual - everything else

Managing State on Kubernetes
“Understand your orchestration system”

Let’s skip over the basics

* Unless you want to manually pin pods to nodes (see previous section),

you should use either:

o StatefulSet:
m decouples replicas from nodes
m persistent address for each replica, DNS-based peer discovery
m network-attached storage instance associated with each replica
o DaemonSet:
m pin one replica to each node

m use node’s disk(s)

Where do things go wrong?

apiVersion: apps/vibetal
kind: StatefulSet
metadata:
name: cockroachdb
spec:
serviceName: "cockroachdb"
replicas: 3
template:
metadata:

labels:
app: cockroachdb

spec:

containers:

- name: cockroachdb
image: cockroachdb/cockroach:v2.1.0
ports:

- containerPort: 26257
name: grpc
- containerPort: 8080
name: http
command: ["cockroach", "start",

n

--insecure", "--join=cockroachdb"]

Don’t trust the defaults!

e If you don't specifically ask for persistent storage, you won't get any

o Always think about and specify where your data will live

Don'’t trust the defaults!

e If you don't specifically ask for persistent storage, you won't get any

o Always think about and specify where your data will live

Container Container

Container

Host

2. Data on host filesystem 3. Data in network storage

Ask for a dynamically provisioned PersistentVolume

volumeMounts:
- name: datadir
mountPath: /cockroach/cockroach-data
volumes:
- name: datadir
persistentVolumeClaim:
claimName: datadir
volumeClaimTemplates:
- metadata:
name: datadir
spec:
accessModes:
- "ReadWriteOnce"
resources:
requests:
storage: 10061

Don’t trust the defaults!

4
C
Q

+=

2
(92]
—
Q
o

2
©

4=
(O

o)
| -
S
O
>
=
®)

Z

But how’s performance?

Don’t trust the defaults!

e I|f you don't create and request your own StorageClass, you're

probably getting slow disks
o Default on GCE is non-SSD (pd-standard)

o Default on Azure is non-SSD (non-managed blob storage)

o Default on AWS is gp2, which are backed by SSDs but with fewer IOPs than io2

e This really affects database performance

Use a custom StorageClass

volumeClaimTemplates:
- metadata:
name: datadir
spec:
accessModes:
- "ReadWriteOnce"
resources:
requests:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: fast
provisioner: kubernetes.io/gce-pd
parameters:
type: pd-ssd storage: 1006i
storageClassName: fast

Performance problems

* There are a lot of other things you have to do to get performance

equivalent to what you'd get outside of Kubernetes

e For more detail, see

https://cockroachlabs.com/docs/kubernetes-performance.html

https://cockroachlabs.com/docs/kubernetes-performance.html

What other defaults are bad?

What other defaults are bad?

e |fyou:
o Create a Kubernetes cluster with 3 nodes

o Create a 3-replica StatefulSet running CockroachDB

e What happens if one of the nodes fails?

Don'’t trust the defaults!

Node 1 Node 2 Node 3

cockroachdb-2

cockroachdb-0

cockroachdb-1

Don’t trust the defaults!

e If you don't specifically ask for your StatefulSet replicas to be

scheduled on different nodes, they may not be (k8s issue #41130)
o If the node with 2 replicas dies, Cockroach will be unavailable until they come back
e This is terrible for fault tolerance

o What's the point of running 2 database replicas on the same machine?

Configure pod anti-affinity

affinity:
IpodAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:

matchExpressions:
- key: app
operator: In
values:
- cockroachdb
topologyKey: kubernetes.io/hostname

What can go wrong other than bad defaults?

What else can go wrong?

* In early tests, Cockroach pods would fail to get re-created if all of them
were brought down at once

e Kubernetes would create the first pod, but not any others

$ kubectl get pods
READY STATUS RESTARTS AGE

cockroachdb-0 0/1 Running 0 1h

What else can go wrong?

$ kubectl describe pod cockroachdb-0

Events:
Type Reason Age] Message

Warning Unhealthy 4m (x420 over 1h) kubelet, minikube Readiness probe failed: HTTP probe failed with statuscode: 500

Know your app and your orchestration system

o StatefulSets (by default) only create one pod at a time
* They also wait for the current pod to pass readiness probes before

creating the next

Know your app and your orchestration system

o StatefulSets (by default) only create one pod at a time

* They also wait for the current pod to pass readiness probes before
creating the next

e The Cockroach health check used at the time only returned healthy if

the node was connected to a majority partition of the cluster

Before the restart

heaﬂhy7

v
)

If just one node were to fail

/T\
=

If just one node were to fail

.
B]

Create missing pod

After all nodes fail

Wait for first pod to
be healthy before
adding second

Wait for connection
to rest of cluster
before saying I

healthy? I

——— |

no

Solution to pod re-creation deadlock

» Keep basic liveness probe endpoint
o Simply checks if process can respond to any HTTP request at all
e Create new readiness probe endpoint in Cockroach

o Returns HTTP 200 if node is accepting SQL connections

Solution to pod re-creation deadlock

» Keep basic liveness probe endpoint

o Simply checks if process can respond to any HTTP request at all
e Create new readiness probe endpoint in Cockroach

o Returns HTTP 200 if node is accepting SQL connections

* Now that it's an option, tell the StatefulSet to create all pods in parallel

Other potential issues to look out for

e Set resource requests/limits for proper isolation and to avoid evictions
* No PodDisruptionBudgets by default (#35318)

e Ifin the cloud, don't depend on your nodes to live forever

o Hosting services (I'm looking you, GKE) tend to just delete and recreate node VMs in
order to upgrade node software

o Be especially careful about using the nodes’ local disks because of this

e If on-prem, good luck getting fast, reliable network attached storage

Other potential issues to look out for

e |f you issue TLS certificates for StatefulSet DNS addresses, don't forget

to include the namespace-scoped addresses

o "cockroachdb.default.kubernetes.svc.local” vs just “cockroachdb”

o Needed for cross-namespace communication
o Also don't put pod IPs in node certs - it'll work initially, but not after pod re-creation
e Multi-region stateful systems are really tough to make work

o Both network connectivity and persistent addresses are hard to set up

o Hopefully you went to yesterday’s Cilium and Istio talks

How to get started

Isn’t this all a lot of work?

Gettings things right is far from easy

What should you do if you aren’t an
expert on the systems you want to use?

How to get started

* You could take the time to build expertise

How to get started

* You could take the time to build expertise

e But ideally someone has already done the hard work for you

Off-the-shelf configurations

e There are great configurations available for popular OSS projects
* They've usually been made by someone who knows that project well

e They've often already been proven in production by other users

Off-the-shelf configurations

o Kubernetes off-the-shelf configs are unfortunately quite limited

o YAML forces the config writer to make decisions that would best be left to the user

o No built-in method for parameter substitution
e How could a config writer possibly know your desired:

o StorageClass

o Disk size

o CPU and memory requests/limits

o Application-specific configuration options

o etc.

Enter: package managers

e Additional formats have been defined to make parameterizing easier
e Package creator defines set of parameters that can be easily overriden

o User doesn't have to understand or muck with YAML files

o Just look through list of parameters and pick which need customizing

helm / charts

<> Code () Issues 239

Branch: masterv charts / stable /

‘.,jt vsliouniaev and k8s-ci-robot Add rbac condition in alertmanager (#9007)

B acs-engine-autoscaler
| aerospike

i anchore-engine

B8 apm-server

i ark

im artifactory-ha

i artifactory

i auditbeat

Bm aws-cluster-autoscaler

» bitcoind

% View Repository ® Watch~ = 250 Y Star

'] Pull requests 347 il Insights

Create new file

Enrich deploy. template for acs-engine-autoscaler (#5662)
[stable/aerospike] Add cmd and args options to Aerospike config (#3856)
add brady todhunter as approver to anchore-engine (#8614)
[stable/apm-server] Elastic APM Server (#6058)

[stable/ark] Quote configuration parameter backupStorageProvider.conf...
Deprecate JFrog charts (moved to https://github.com/jfrog/charts) (#7627
Deprecate JFrog charts (moved to https://github.com/jfrog/charts) (#7627
upgrade auditbeat (#8277)

Typo fix in aws-cluster-autoscaler/README.md (#4297)

typo fix in bitcoind (#4548)

5,450 Y Fork 4,850

Upload files = Find file = History

Latest commit deb5aa6 15 minutes ago

6 months ago
8 months ago
14 days ago
5 months ago
23 days ago
2 months ago
2 months ago
27 days ago
8 months ago

7 months ago

Service Catalog

cadvisor calico cassandra
chronos clair cockroachdb

SEARCH

@

ceph

C

concord

BROWSE

@

ceph-dash

confluent-
connect

CONTRIBUTE DC/0S MESOSPHERE

cerebro

confluent-
control-center

Pivotal Services Marketplace

The Pivotal Services Marketplace provides users with platform add-on services to enhance, secure,
and manage applications. The catalog includes solutions from Pivotal, our Partners, and the Cloud

Foundry community providing a curated selection of capabilities from data ...

Most Viewed
" Spring Cloud
0mongo g/lg'rzwgoDB L ‘ steeltoe EESEETEITLE Egg:]ael clodd Services for
BCE

Our Newest Additions

- e CyberArk

CYBERARK Conjur
CONJUR

A SENTRY EEELGY ClO[IER Aqua Security

Orchestrator package managers

o Kubernetes: Helm

o helm.sh

o qithub.com/helm/charts/
DC/0OS: Universe

o universe.dcos.io

Cloud Foundry: Pivotal Services Marketplace

o pivotal.io/platform/services-marketplace

Docker: Application Packages (experimental)

o CLI tool: docker-app

http://helm.sh
http://github.com/helm/charts/
http://universe.dcos.io
https://pivotal.io/platform/services-marketplace

Summary
Go forth and manage persistent state

Don’t let configuration mistakes take down
your production services

1. Understand your stateful application
2. Understand your orchestration system
3. Plan for the worst

1. Understand your stateful application
2. Understand your orchestration system
3. Plan for the worst

(or use a package manager)

Thank You!

For more info:
cockroachlabs.com
github.com/cockroachdb/cockroach

alex@cockroachlabs.com / @alexwritescode

Cockroach LABS

