
Three Pillars with Zero Answers
A New Observability Scorecard

November 5, 2018

First, a Critique

Observing microservices is hard

Google and Facebook solved this (right???)

They used Metrics, Logging, and Distributed Tracing…

So we should, too.

The Conventional Wisdom

The Three Pillars of Observability
- Metrics
- Logging
- Distributed Tracing

Metrics!

Logging!

Tracing!

Fatal Flaws

A word nobody knew in 2015…

Dimensions (aka “tags”) can explain variance
in timeseries data (aka “metrics”) …

… but cardinality

Logging Data Volume: a reality check

transaction rate

x all microservices

x cost of net+storage

x weeks of retention

way too much $$$$

The Life of Transaction Data: Dapper

Stage Overhead affects… Retained

Instrumentation Executed App 100.00%

Buffered within app process App 000.10%

Flushed out of process App 000.10%

Centralized regionally Regional network + storage 000.10%

Centralized globally WAN + storage 000.01%

Logs Metrics Dist. Traces

TCO scales gracefully – ✓ ✓

Accounts for all data
(i.e., unsampled) ✓ ✓ –

Immune to cardinality ✓ – ✓

Fatal Flaws

Data vs UI

Data vs UI

Metrics

Logs

Traces

Metrics, Logs, and Traces are
Just Data,

… not a feature or use case.

A New Scorecard
for Observability

“SLI” = “Service Level Indicator”

TL;DR: An SLI is an indicator of health that
a service’s consumers would care about.

… not an indicator of its inner workings

Observability: Quick Vocab Refresher

Observability: Two Fundamental Goals

- Gradually improving an SLI
- Rapidly restoring an SLI

Reminder: “SLI” = “Service Level Indicator”

NOW!!!!

days, weeks, months…

1. Detection: perfect SLI capture

2. Refinement: reduce the search space

Observability: Two Fundamental Activities

An interlude about stats frequency

Specificity:

- Arbitrary dimensionality and cardinality
- Any layer of the stack, including mobile+web!

Fidelity:

- Correct stats!!!
- High stats frequency (i.e., “beware smoothing”!)

Freshness: ≤ 5 second lag

Scorecard >> Detection

of things your users
actually care about

of microservices

of failure modes

Must reduce
the search space!

Scorecard >> Refinement

Scorecard >> Refinement

Identify Variance

Explain Variance

An interlude about variance and “p99”

Scorecard >> Refinement

Identifying Variance:

- Cardinality: understand which tag changed
- Robust stats: histograms (see prev slide)
- Data retention: always “Know What’s Normal”

Explaining variance:

- Correct stats!!!
- “Suppress the messengers” of microservice failures

Wrapping up…

(first, a hint at my perspective)

The Life of Transaction Data: Dapper

Stage Overhead affects… Retained

Instrumentation Executed App 100.00%

Buffered within app process App 000.10%

Flushed out of process App 000.10%

Centralized regionally Regional network + storage 000.10%

Centralized globally WAN + storage 000.01%

(Review)

The Life of Transaction Data: Dapper LightStep

Stage Overhead affects… Retained

Instrumentation Executed App 100.00%

Buffered within app process App 100.00%

Flushed out of process App 100.00%

Centralized regionally Regional network + storage 100.00%

Centralized globally WAN + storage on-demand

An Observability Scorecard

Detection
- Specificity: unlimited

cardinality, across the
entire stack

- Fidelity: correct stats,
high stats frequency

- Freshness: ≤ 5 seconds

Refinement
- Identifying variance: unlimited

cardinality, hi-fi histograms,
data retention

- “Suppress the messengers”

Thank you!

Ben Sigelman, Co-founder and CEO
twitter: @el_bhs

email: bhs@lightstep.com

