
Copyright 2018 Kirk Pepperdine

MEMORY
THE TROUBLE WITH

Copyright 2018 Kirk Pepperdine

 jC
larity

▸ Kirk Pepperdine

▸ Authors of jPDM, a performance diagnostic model

▸ Co-founded jClarity

▸ Building the smart generation of performance diagnostic tooling

▸ Bring predictability into the diagnostic process

▸ Co-founded JCrete

▸ The hotest unconference on the planet

▸ Java Champion(s)

OUR MARKETING SLIDE

Copyright 2018 Kirk Pepperdine

 jC
larity

What is your performance trouble spot

Copyright 2018 Kirk Pepperdine

 jC
larity

> 70% of all applications are bottlenecked
on memory

Copyright 2018 Kirk Pepperdine

 jC
larity

and no,

Garbage Collection

is not a fault!!!!

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

Spring Boot

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

Cassandra

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

Cassandra
or any big nosql solution

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

Apache Spark

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

Apache Spark
or any big data framework

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

Log4J

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

Log4J
or any Java logging framework

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

JSON

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

JSON
With almost any Marshalling protocol

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

ECom caching products

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

ECom caching products
Hibernate

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

ECom caching products
Hibernate
and so on

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

ECom caching products
Hibernate
and so on
and so on

Copyright 2018 Kirk Pepperdine

DO YOU USE
 jC

larity

ECom caching products
Hibernate
and so on
and so on
and so on

Copyright 2018 Kirk Pepperdine

 jC
larity

then you are very likely in this 70%

Copyright 2018 Kirk Pepperdine

Copyright 2018 Kirk Pepperdine

PROBLEMS
▸ High memory churn rates

▸many temporary objects

▸ Large live data set size

▸ inflated live data set size

▸ loitering

▸ Unstable live data set size

▸memory leak

 jC
larity

Copyright 2018 Kirk Pepperdine

WAR STORIES
▸ Reduced allocation rates from 1.8gb/sec to 0

▸ tps jumped from 400,000 to 25,000,000!!!

▸ Stripped all logging our of a transactional engine

▸Throughput jumped by a factor of 4x

▸Wrapped 2 logging statements in a web socket framework

▸Memory churn reduced by a factor of 2

 jC
larity

Copyright 2018 Kirk Pepperdine

ALLOCATION SITE
 jC

larity

Foo foo = new Foo();

forms an allocation site

0: new #2 // class java/lang/Object
2: dup
4: invokespecial #1 // Method java/lang/Object."<init>":()V

▸ Allocation will (mostly) occur in Java heap

▸ fast path

▸slow path

▸small objects maybe optimized to an on-stack allocation

Copyright 2018 Kirk Pepperdine

JAVA HEAP
 jC

larity

Eden Survivor (to) Tenured

Java Heap

▸ Java Heap is made of;

▸Eden - nursery

▸Survivor - intermediate pool designed to delay promotion

▸Tenured - to hold long lived data

▸Each space contributes to a different set of problems

▸All affect GC overhead

Copyright 2018 Kirk Pepperdine

EDEN ALLOCATIONS
 jC

larity

top of heap pointer

Copyright 2018 Kirk Pepperdine

OBJECT ALLOCATION
 jC

larity

top of heap pointer

Foo foo = new Foo();

Bar bar = new Bar();

byte[] array = new byte[N];

Copyright 2018 Kirk Pepperdine

OBJECT ALLOCATION
 jC

larity

top of heap pointer

Foo foo = new Foo();

Bar bar = new Bar();

byte[] array = new byte[N];

Foo

Copyright 2018 Kirk Pepperdine

OBJECT ALLOCATION
 jC

larity

top of heap pointer

Foo foo = new Foo();

Bar bar = new Bar();

byte[] array = new byte[N];

Foo Bar

Copyright 2018 Kirk Pepperdine

OBJECT ALLOCATION
 jC

larity

top of heap pointer

Foo foo = new Foo();

Bar bar = new Bar();

byte[] array = new byte[N];

Foo Bar byte[]

Copyright 2018 Kirk Pepperdine

OBJECT ALLOCATION
 jC

larity

top of heap pointer

Foo Bar byte[]

▸ In multi-threaded apps, top of heap pointer must be surrounded by barriers

▸single threads allocation

▸hot memory address

▸ solved by stripping (Thread local allocation blocks)

Copyright 2018 Kirk Pepperdine

TLAB ALLOCATION
 jC

larity

top of heap pointer

▸ Assume 2 threads

▸each thread will have it’s own (set of) TLAB(s)

TLAB TLAB

TLAB pointerTLAB pointer

Copyright 2018 Kirk Pepperdine

TLAB ALLOCATIONS
 jC

larity

▸ Thread 1 -> Foo foo = new Foo(); byte[] array = new byte[N];

▸byte[] doesn’t fit in a TLAB

▸ Thread 2 -> Bar bar = new Bar();

byte[]TLAB TLABFoo Bar

TLAB pointerTLAB pointer
top of heap pointer

Copyright 2018 Kirk Pepperdine

TLAB WASTE %
 jC

larity

▸ Allocation failure to prevent buffer overflow

▸waste up to 1% of a TLAB

FooFoo Foo Foo Foo Foo Foo Foo

Copyright 2018 Kirk Pepperdine

TLAB WASTE %
 jC

larity

▸ Allocation failure to prevent buffer overflow

▸waste up to 1% of a TLAB

Foo Foo Foo Foo Foo Foo Foo Foo
Foo

Copyright 2018 Kirk Pepperdine

TENURED SPACE
 jC

larity

▸ Allocations in tenured make use of a free list

▸ free list allocation is ~10x the cost of bump and run

▸Data in tenured tends to be long lived

▸amount of data in tenured do affect GC pause times

Bar Bar Foo Foo

Free List

Copyright 2018 Kirk Pepperdine

PROBLEMS
▸ High memory churn rates

▸many temporary objects

 jC
larity

Copyright 2018 Kirk Pepperdine

PROBLEMS
▸ High memory churn rates

▸many temporary objects

 jC
larity

▸Quickly fill Eden

▸ frequent young gc cycles

▸ speeds up aging

▸ premature promotion

▸more frequent tenured cycles

▸ increased copy costs

▸ increased heap fragmentation

▸Allocation is quick

▸ quick * large number = slow

Copyright 2018 Kirk Pepperdine

REDUCING ALLOCATIONS
 jC

larity

> 1gb/sec

< 300mb/sec

siz
e

of
 g

ai
n

Copyright 2018 Kirk Pepperdine

PROBLEMS
▸ High memory churn rates

▸many temporary objects

▸Large live data set size

▸ inflated live data set size

▸ loitering

 jC
larity

Copyright 2018 Kirk Pepperdine

PROBLEMS
▸ High memory churn rates

▸many temporary objects

▸Large live data set size

▸ inflated live data set size

▸ loitering

 jC
larity

▸ inflated scan for root times

▸ reduced page locality

▸ Inflated compaction times

▸ increase copy costs

▸ likely less space to copy too

Copyright 2018 Kirk Pepperdine

PAUSE VS OCCUPANCY
 jC

larity

Copyright 2018 Kirk Pepperdine

PROBLEMS
▸ High memory churn rates

▸many temporary objects

▸Large live data set size

▸ inflated live data set size

▸ loitering

▸Unstable live data set size

▸memory leak

 jC
larity

Copyright 2018 Kirk Pepperdine

PROBLEMS
▸ High memory churn rates

▸many temporary objects

▸Large live data set size

▸ inflated live data set size

▸ loitering

▸Unstable live data set size

▸memory leak

 jC
larity

▸Eventually you run out of heap
space

▸ each app thread throws an
OutOfMemoryError and
terminates

▸JVM will shutdown with all non-
daemon threads terminate

Copyright 2018 Kirk Pepperdine

 jC
larity

Escape Analysis

Copyright 2018 Kirk Pepperdine

Demo time

 jC
larity

Copyright 2018 Kirk Pepperdine

TEXT

TITLE TEXT

▸ Body Level One

▸ Body Level Two

▸ Body Level Three

▸ Body Level Four

▸ Body Level Five

Ask out my Java Performance Tuning Workshop

Send us a Java 11 GC log or
tweet about @jclarity

#QConSF and #censum
and

get a free Censum License

