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▸ Kirk Pepperdine 

▸ Authors of jPDM, a performance diagnostic model 

▸ Co-founded jClarity 

▸ Building the smart generation of performance diagnostic tooling 

▸ Bring predictability into the diagnostic process 

▸ Co-founded JCrete 

▸ The hotest unconference on the planet 

▸ Java Champion(s) 

OUR MARKETING SLIDE
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What is your performance trouble spot
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> 70% of all applications are bottlenecked 
on memory
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and no,

Garbage Collection


is not a fault!!!!
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Cassandra
or any big nosql solution
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Apache Spark
or any big data framework
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Log4J
or any Java logging framework
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JSON
With almost any Marshalling protocol
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then you are very likely in this 70%
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PROBLEMS
▸ High memory churn rates 

▸many temporary objects 

▸ Large live data set size 

▸ inflated live data set size 

▸ loitering 

▸ Unstable live data set size 

▸memory leak
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WAR STORIES
▸ Reduced allocation rates from 1.8gb/sec to 0 

▸ tps jumped from 400,000 to 25,000,000!!! 

▸ Stripped all logging our of a transactional engine 

▸Throughput jumped by a factor of 4x 

▸Wrapped 2 logging statements in a web socket framework 

▸Memory churn reduced by a factor of 2 
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Foo foo = new Foo();

forms an allocation site

0: new           #2   // class java/lang/Object
2: dup
4: invokespecial #1   // Method java/lang/Object."<init>":()V

▸ Allocation will (mostly) occur in Java heap 

▸ fast path 

▸slow path 

▸small objects maybe optimized to an on-stack allocation
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Eden Survivor (to) Tenured

Java Heap

▸ Java Heap is made of; 

▸Eden - nursery 

▸Survivor - intermediate pool designed to delay promotion 

▸Tenured - to hold long lived data 

▸Each space contributes to a different set of problems 

▸All affect GC overhead
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top of heap pointer

Foo foo = new Foo();

Bar bar = new Bar();

byte[] array = new byte[N];
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Bar bar = new Bar();

byte[] array = new byte[N];
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top of heap pointer

Foo foo = new Foo();

Bar bar = new Bar();

byte[] array = new byte[N];


Foo Bar byte[]
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top of heap pointer

Foo Bar byte[]

▸ In multi-threaded apps, top of heap pointer must be surrounded by barriers 

▸single threads allocation 

▸hot memory address 

▸ solved by stripping (Thread local allocation blocks)
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top of heap pointer

▸ Assume 2 threads 

▸each thread will have it’s own (set of) TLAB(s)

TLAB TLAB

TLAB pointerTLAB pointer
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▸ Thread 1 -> Foo foo = new Foo(); byte[] array = new byte[N]; 

▸byte[] doesn’t fit in a TLAB  

▸ Thread 2 -> Bar bar = new Bar();

byte[]TLAB TLABFoo Bar

TLAB pointerTLAB pointer
top of heap pointer
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▸ Allocation failure to prevent buffer overflow 

▸waste up to 1% of a TLAB

FooFoo Foo Foo Foo Foo Foo Foo
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▸ Allocation failure to prevent buffer overflow 

▸waste up to 1% of a TLAB

Foo Foo Foo Foo Foo Foo Foo Foo
Foo
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▸ Allocations in tenured make use of a free list 

▸ free list allocation is ~10x the cost of bump and run 

▸Data in tenured tends to be long lived 

▸amount of data in tenured do affect GC pause times

Bar Bar Foo Foo

Free List
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▸Quickly fill Eden 

▸ frequent young gc cycles 

▸ speeds up aging 

▸ premature promotion 

▸more frequent tenured cycles 

▸ increased copy costs 

▸ increased heap fragmentation 

▸Allocation is quick 

▸ quick * large number = slow
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▸ inflated scan for root times 

▸ reduced page locality 

▸ Inflated compaction times 

▸ increase copy costs 

▸ likely less space to copy too 
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▸Eventually you run out of heap 
space 

▸ each app thread throws an 
OutOfMemoryError and 
terminates 

▸JVM will shutdown with all non-
daemon threads terminate
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Escape Analysis
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TEXT

TITLE TEXT

▸ Body Level One 

▸ Body Level Two 

▸ Body Level Three 

▸ Body Level Four 

▸ Body Level Five

Ask out my Java Performance Tuning Workshop

Send us a Java 11 GC log or 
tweet about @jclarity  

#QConSF and #censum 
and 

get a free Censum License


