WebAssembly

neither Web nor Assembly, but Revolutionary
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The WebAssembly revolution has begun
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So..what is WebAssembly? aka Wasm
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Efficient, safe, low-level bytecode for the \Web

Jay Phelps | @_jayphelps



Efficient
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~ast to load and execute

Jay Phelps | @_jayphelps



Streaming compilation
compiled to machine code faster than it downloads
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Efficient, safe, low-level bytecode for the \Web




Sandboxed and designed with security in mind

Control-flow integrity checks, stack protection,
dynamic dispatch table separate from linear memory
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However, does not prevent all classes of exploits

Code reuse, side channel, race conditions, etc
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low-level bytecode
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WebAssembly is a portable, binary
Instruction set for a virtual machine
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(the i32.add instruction)
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Intended (mostly) as a compilation target
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int factorial(int n) {
if (n == 0) {
return 1;

} else {
return n * factorial(n - 1);

}
}
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Efficient, safe, low-level bytecode for the \Web
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How did we get here?
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Primary goals:
languages other than JavaScript and
great—ideally improved—performance
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Java Applets

Never truly integrated into browsers
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Why not integrate the JVM or CLR?

misaligned goals, mostly related to validation/compiling

Jay Phelps | @_jayphelps



Portable Native Client (PNaCl)
lead by Google
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asm.js
lead by Mozilla
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C asm.Js

"use asm”
size t strlen(char *ptr) { function strlen(ptr) {
char *curr = ptr; ptr = ptr|o;
while (*curr != 0) { var curr = 0;
curr++; ~ ___-> curr = ptr;
} while (MEM8[curr]|o != 0) {
return (curr - ptr); curr = (curr + 1)|0;
} }

return (curr - ptr)|o;

}



, WebAssembly |
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WebAssembly is an unprecedented collaboration
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The first open and standardized bytecode
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s it going to kill JavaScript’
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s it going to kill JavaScript’
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Nope!
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Will we compile JavaScript to WebAssembly’
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JavaScript is an extremely dynamic language
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Q you can push into Array.prototype and
totally mess up empty arrays

Array.prototype.push("lol")
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var empty = [];
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Fully spec compliant JavaScript compiled
to WebAssembly would be slower
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...but a strict subset of JavaScript could be fast!
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2 Prepack GETTING STARTED FAQS TRY ITOUT GITHUB

Prepack

A tool for making JavaScript code run faster.

*Prepack is still in an early development stage and not ready for
poroduction use just yet. Please try it out, give feedback, and help fix
bugs.

What does it do?

Prepack is a tool that optimizes JavaScript source code: Computations that can be done at compile-time instead of run-time get
eliminated. Prepack replaces the global code of a JavaScript bundle with equivalent code that is a simple sequence of assignments.
This gets rid of most intermediate computations and object allocations.




WebAssembly vl MVP is best suited for
languages like C/C++ and Rust
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|[deal for relatively low-level, system languages

Very little dynamic features at run-time, no GC
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Some modern features of C++
don’t perform ideal
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Exceptions are the most common example
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But other languages are already
supported, and more planned

Things like Go, .NET, Java, OCaml, and even new ones
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WebAssembly will impact language
design and implementation
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The Web requires unique considerations
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Rust team has specifically called out
WebAssembly as a priority
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File sizes

as well as lazy-loading/code splitting, caching, etc
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Shared libraries

Traditional platforms like iIOS/Android/macQS/
Windows have more robust stdlibs and Ul toolkits
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Offline

Caching story much more complex than desktop
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Interop with JavaScript

Languages which better interop with JS have major advantage
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Promising: Dart, Elm, Reason
Languages designed for the Web
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a TypeScript-like language’

AssemblyScript Is an early example
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AssemblyScript

export function factorial(n: i32): 132 {
if (n == 0)
return 1;

} else {
return n * factorial(n - 1);

}
}
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When should | target WebAssembly right now?
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Heavily CPU-bound number computations
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Games
both Unity and Unreal Engine offer support
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Using existing portable code

e.g. video/audio decoders and other processing
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Zoom for Web client

Video conferencing powered by WebAssembly,
video/audio decoding off the main threaad
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react-native-dom

(not react-native-web)

React Native DOM -

An experimental, comprehensive port of React Native to the web.

Multithreaded by default: Following the exact same architecture as React Native on mobile, all of your react
components/app logic are run in web worker, leaving the main thread to entirely focus on rendering.

Same layout behavior as React Native on mobile: Powered by custom bindings to Yoga and compiled to Web Assembly,
avoid layout inconsistencies between your native and web projects.

Built with the same bundler used for existing React Native platforms: Build both the "native" main and JS threads with the
Metro Bundler along with all the developer experience features it provides.

Ecosystem compatible escape hatch to the DOM: Using the same native module bridge, expose DOM-specific APIs in a
more generic way that can easily be made into a cross-platform module.

To see it in action, check out these live demos:

e Movies Demo




Web Ul developers are probably already using
WebAssembly without knowing it!
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source-map npm package

used by Firefox, Babel, create-react-app, LESS, etc

You , a\

HACKS

By Nick Fitzgerald

Oxidizing Source Maps with Rust and 1 0 9
WebAssembl
. . 7 x faster!

Edit: Further algorithmic improvements yielded additional speedups over what
is described here, for total speedups of up to 10.9x faster than the original
implementation. Read about these extra gains in Speed Without Wizardry!

Tom Tromey and | have replaced the most performance-sensitive portions of
the source-map JavaScript Library’s source map parser with Rust code that is
compiled to WebAssembly. The WebAssembly is up to 5.89 times faster than
the JavaScript implementation on realistic benchmarks operating on real world
source maps. Additionally, performance is also more consistent: relative

standard deviations decreased. Jay Phelps | @_jayphEIPS




Other use cases are just around the corner
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What was that binary stuff?
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int factorial(int n) {

it (n ==
return
} else {
return
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n * factorial(n - 1);
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Binary can be a little intimidating
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Protip: don't worry about it
(unless of course, you want to)
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Tooling will eventually make it a non-issue
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Textual representation to the rescue!
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(func $factorial (param $n i32) (result i32)
get local $n
132.const O
132.ed
if $ifo
132.const 1
return
end $if0
get local $n
132.const 1
132.sub
call $factorial
get local $n
132.mul
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| et's learn the fundamentals
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WebAssembly is a stack machine
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..Wwhat's a stack machine?
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Stack

a data structure with two operations:

push and pop
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stack machine: instructions on a stack
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Why a stack machine?
instead of AST, SSA, or register machine
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Smaller binary encoding, easier and faster
single pass verification and VM implementation
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132.const

132.const
132.add

Jay Phelps | @_jayphelps



132.const

132.const
132.add
call $log
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What's missing?
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Direct access to Host APlIs (e.g. the DOM)

NO direct access to sys calls, you have to call into JavasScript
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Garbage collection

necessary for better interop with JavaScript
and WebIDL (e.g. the DOM)
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Multi-threading

SharedArrayBuffer re-enabled in Chrome 63
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Single Instruction Multiple Data (SIMD)

ardware parallelization of vector computations
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Zero-cost exceptions

someday maybe even Algebraic Effects (!!!)
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There's more, but advancing quickly!
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How do | get started?
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webassembly.org
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https://github.com/mbasso/awesome-wasm

Awesome Wasm “5)| awesome

Collection of awesome things regarding WebAssembly (wasm) ecosystem.

Please read the contribution guidelines if you want to contribute.

Contents

General Resources
Online Playground
Tutorials

Compilers

Non-Web Embeddings

Projects
o Web frameworks-libraries

o Data processing

o WebGL
webpack
Browserify
Languages

o node.js

o QOthers

e Tools
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Supported in all modern browsers

Usage
Global 76.85%

—dge g -irefox Chrome Safari |OS Safari g

49
03
o/

11.2

62 12 11.4




The revolution is just beginning
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Efficient, safe, low-level bytecode for the Web
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for the Web?
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The first open and standardized bytecode
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WebAssembly Core Specification W3

Editor’s Draft, 8 August 2018

This version:
https://webassembly.github.io/spec/core/bikeshed/
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Editor:
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Abstract

This document describes version 1.0 of the core WebAssembly standard, a safe, portable, low-level code
mat designed for efficient execution and compact representation.

Part of a collection of related documents: the Core WebAssembly Specification, the WebAssembly JS Inte
face, and the WebAssembly Web API.

Status of this document



o Platform-independent: can be embedded in browsers, run as a

stand-alone VM, or integrated in other environments.




WebAssembly is not just for the Web!
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ewasim

Etherium-flavored WebAssembly VM for
running distributed smart contracts




$ cat selfpipe.c
#include <stdio.h>
#include <unistd.h>

char buf[4096];

int main(int argc, char *argv([])
{
int pipes[2], ret;
size t 1;

ret = pipe(pipes);

if (ret) {
perror("pipe");
return -1;

}

for (1 = 0; 1 < 16ULL * 1024ULL * 1024ULL * 1024 / 4096; ++1) {
ret = write(pipes[l], buf, sizeof(buf));
if (ret < 0) {
perror(“write");
return -1;

¥

ret = read(pipes[0], buf, sizeof(buf));
if (ret < 0) {

perror("read");

}
}

return O;
}
$ cc -03 -0 selfpipe selfpipe.c
$ time ./selfpipe

real Om4. 496s

user OmO. 948s

Sys Om3.546s

$ emcc -03 -0 selfpipe.js selfpipe.c
$ time ./wasmjit selfpipe.wasnm

real Om2.025s
user OmQ. 004s
Sys Om2.019s

$ |




Google
Summer of Code

nebulet

microkernel that runs WebAssembly exclusively



Efficient, safe, low-level bytecode for the \Web
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Efficient, safe, low-level bytecode forthe\Aleb
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Thanks!
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