
WebAssembly
neither Web nor Assembly, but Revolutionary

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

The WebAssembly revolution has begun

Chief Software Architect |

previously

Jay Phelps

@_jayphelps

Support, Dev Rel, Staff Augmentation, Mentorship, and more

www.thisdot.co

Jay Phelps | @_jayphelps

So...what is WebAssembly? aka Wasm

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Fast to load and execute

Jay Phelps | @_jayphelps

Streaming compilation
 compiled to machine code faster than it downloads

(func $0 (type 0)
 i32.const 0
 i32.load
)

(func $1 (type 0)
 i32.const 0
 i32.load
)

(func $2 (type 0)
 i32.const 0
 i32.load
)

(func $3 (type 0)
 i32.const 0
 i32.load
)

.wasm

(func $0 (type 0)
 i32.const 0
 i32.load
)

(func $1 (type 0)
 i32.const 0
 i32.load
)

(func $2 (type 0)
 i32.const 0
 i32.load
)

(func $3 (type 0)
 i32.const 0
 i32.load
)

.wasm machine code

(func $0 (type 0)
 i32.const 0
 i32.load
)

(func $1 (type 0)
 i32.const 0
 i32.load
)

(func $2 (type 0)
 i32.const 0
 i32.load
)

(func $3 (type 0)
 i32.const 0
 i32.load
)

.wasm machine code

wasm-function[0]:
 sub rsp, 8
 mov eax, dword ptr [r15]
 nop
 add rsp, 8

wasm-function[1]:
 sub rsp, 8
 mov eax, dword ptr [r15]
 nop
 add rsp, 8

wasm-function[2]:
 sub rsp, 8
 mov eax, dword ptr [r15]
 nop
 add rsp, 8

wasm-function[3]:
 sub rsp, 8
 mov eax, dword ptr [r15]
 nop
 add rsp, 8

.wasm machine code

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Websafe

Jay Phelps | @_jayphelps

Sandboxed and designed with security in mind

Control-flow integrity checks, stack protection,
dynamic dispatch table separate from linear memory

Jay Phelps | @_jayphelps

However, does not prevent all classes of exploits
Code reuse, side channel, race conditions, etc

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Weblow-level bytecode

Jay Phelps | @_jayphelps

WebAssembly is a portable, binary
instruction set for a virtual machine

Jay Phelps | @_jayphelps

0x6a
01101010

(the i32.add instruction)

Jay Phelps | @_jayphelps

Intended (mostly) as a compilation target

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

00 61 73 6D 01 00 00 00 01
86 80 80 80 00 01 60 01 7F
01 7F 03 82 80 80 80 00 01
00 06 81 80 80 80 00 00 0A
9D 80 80 80 00 01 97 80 80
80 00 00 20 00 41 00 46 04
40 41 01 0F 0B 20 00 41 01
6B 10 00 20 00 6C 0B

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Web

Jay Phelps | @_jayphelps

How did we get here?

Jay Phelps | @_jayphelps

Primary goals:
languages other than JavaScript and

great—ideally improved—performance

Jay Phelps | @_jayphelps

Java Applets
Never truly integrated into browsers

Jay Phelps | @_jayphelps

Why not integrate the JVM or CLR?
misaligned goals, mostly related to validation/compiling

Jay Phelps | @_jayphelps

Portable Native Client (PNaCl)
lead by Google

Jay Phelps | @_jayphelps

asm.js
lead by Mozilla

size_t strlen(char *ptr) {
 char *curr = ptr;
 while (*curr != 0) {
 curr++;
 }
 return (curr - ptr);
}

"use asm"
function strlen(ptr) {
 ptr = ptr|0;
 var curr = 0;
 curr = ptr;
 while (MEM8[curr]|0 != 0) {
 curr = (curr + 1)|0;
 }
 return (curr - ptr)|0;
}

asm.jsC

!

Jay Phelps | @_jayphelps

WebAssembly !

Jay Phelps | @_jayphelps

WebAssembly is an unprecedented collaboration

Jay Phelps | @_jayphelps

The first open and standardized bytecode

Jay Phelps | @_jayphelps

Is it going to kill JavaScript?

Jay Phelps | @_jayphelps

Is it going to kill JavaScript?

Jay Phelps | @_jayphelps

Nope!

Jay Phelps | @_jayphelps

Will we compile JavaScript to WebAssembly?

Jay Phelps | @_jayphelps

JavaScript is an extremely dynamic language

Jay Phelps | @_jayphelps

Fully spec compliant JavaScript compiled
to WebAssembly would be slower

Jay Phelps | @_jayphelps

…but a strict subset of JavaScript could be fast!

Jay Phelps | @_jayphelps

WebAssembly v1 MVP is best suited for
languages like C/C++ and Rust

Jay Phelps | @_jayphelps

Ideal for relatively low-level, system languages
Very little dynamic features at run-time, no GC

Jay Phelps | @_jayphelps

Some modern features of C++
don’t perform ideal

Jay Phelps | @_jayphelps

Exceptions are the most common example

Jay Phelps | @_jayphelps

But other languages are already
supported, and more planned
Things like Go, .NET, Java, OCaml, and even new ones

Jay Phelps | @_jayphelps

WebAssembly will impact language
design and implementation

Jay Phelps | @_jayphelps

The Web requires unique considerations

Jay Phelps | @_jayphelps

Rust team has specifically called out
WebAssembly as a priority

Jay Phelps | @_jayphelps

File sizes
as well as lazy-loading/code splitting, caching, etc

Jay Phelps | @_jayphelps

Shared libraries
Traditional platforms like iOS/Android/macOS/

Windows have more robust stdlibs and UI toolkits

Jay Phelps | @_jayphelps

Offline
Caching story much more complex than desktop

Jay Phelps | @_jayphelps

Interop with JavaScript
Languages which better interop with JS have major advantage

Jay Phelps | @_jayphelps

Promising: Dart, Elm, Reason
Languages designed for the Web

Jay Phelps | @_jayphelps

a TypeScript-like language?
AssemblyScript is an early example

Jay Phelps | @_jayphelps

export function factorial(n: i32): i32 {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

AssemblyScript

Jay Phelps | @_jayphelps

When should I target WebAssembly right now?

Jay Phelps | @_jayphelps

Heavily CPU-bound number computations

Jay Phelps | @_jayphelps

Games
both Unity and Unreal Engine offer support

Jay Phelps | @_jayphelps

Using existing portable code
e.g. video/audio decoders and other processing

Jay Phelps | @_jayphelps

bcrypt

OpenCV

mcl

bls

web-dsp

hunspell

XSalsa20
GDAL

SPHINCS

NTRUxxHash

RLWE
McEliece

Zopfli

SIDH

ttf2woff2

Jay Phelps | @_jayphelps

Zoom for Web client
Video conferencing powered by WebAssembly,

video/audio decoding off the main thread

react-native-dom
(not react-native-web)

Jay Phelps | @_jayphelps

Web UI developers are probably already using
WebAssembly without knowing it!

Jay Phelps | @_jayphelps

source-map npm package

10.9x faster!

used by Firefox, Babel, create-react-app, LESS, etc

Jay Phelps | @_jayphelps

Other use cases are just around the corner

Jay Phelps | @_jayphelps

What was that binary stuff?

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

00 61 73 6D 01 00 00 00 01
86 80 80 80 00 01 60 01 7F
01 7F 03 82 80 80 80 00 01
00 06 81 80 80 80 00 00 0A
9D 80 80 80 00 01 97 80 80
80 00 00 20 00 41 00 46 04
40 41 01 0F 0B 20 00 41 01
6B 10 00 20 00 6C 0B

00 61 73 6D 01 00 00 00 01
86 80 80 80 00 01 60 01 7F
01 7F 03 82 80 80 80 00 01
00 06 81 80 80 80 00 00 0A
9D 80 80 80 00 01 97 80 80
80 00 00 20 00 41 00 46 04
40 41 01 0F 0B 20 00 41 01
6B 10 00 20 00 6C 0B

00 61 73 6D 01 00 00 00 01
86 80 80 80 00 01 60 01 7F
01 7F 03 82 80 80 80 00 01
00 06 81 80 80 80 00 00 0A
9D 80 80 80 00 01 97 80 80
80 00 00 20 00 41 00 46 04
40 41 01 0F 0B 20 00 41 01
6B 10 00 20 00 6C 0B

00 61 73 6D 01 00 00 00 01
86 80 80 80 00 01 60 01 7F
01 7F 03 82 80 80 80 00 01
00 06 81 80 80 80 00 00 0A
9D 80 80 80 00 01 97 80 80
80 00 00 20 00 41 00 46 04
40 41 01 0F 0B 20 00 41 01
6B 10 00 20 00 6C 0B

86 80 80 80 00 01 60 01 7F
01 7F 03 82 80 80 80 00 01
00 06 81 80 80 80 00 00 0A
9D 80 80 80 00 01 97 80 80
80 00 00 20 00 41 00 46 04
40 41 01 0F 0B 20 00 41 01

86 80 80 80 00 01 60 01 7F
01 7F 03 82 80 80 80 00 01
00 06 81 80 80 80 00 00 0A
9D 80 80 80 00 01 97 80 80
80 00 00 20 00 41 00 46 04
40 41 01 0F 0B 20 00 41 01

86 80 80 80 00 01 60 01 7F
01 7F 03 82 80 80 80 00 01
00 06 81 80 80 80 00 00 0A
9D 80 80 80 00 01 97 80 80
80 00 00 20 00 41 00 46 04
40 41 01 0F 0B 20 00 41 01

Jay Phelps | @_jayphelps

Binary can be a little intimidating

Jay Phelps | @_jayphelps

Protip: don't worry about it
(unless of course, you want to)

Jay Phelps | @_jayphelps

Tooling will eventually make it a non-issue

Jay Phelps | @_jayphelps

Textual representation to the rescue!

Jay Phelps | @_jayphelps

(func $factorial (param $n i32) (result i32)
 get_local $n
 i32.const 0
 i32.eq
 if $if0
 i32.const 1
 return
 end $if0
 get_local $n
 i32.const 1
 i32.sub
 call $factorial
 get_local $n
 i32.mul
)

Jay Phelps | @_jayphelps

(func $factorial (param $n i32) (result i32)
 get_local $n
 i32.const 0
 i32.eq
 if $if0
 i32.const 1
 return
 end $if0
 get_local $n
 i32.const 1
 i32.sub
 call $factorial
 get_local $n
 i32.mul
)

Jay Phelps | @_jayphelps

Let's learn the fundamentals

Jay Phelps | @_jayphelps

WebAssembly is a stack machine

Jay Phelps | @_jayphelps

...what's a stack machine?

Jay Phelps | @_jayphelps

a data structure with two operations:

push and pop

Stack

Jay Phelps | @_jayphelps

stack machine: instructions on a stack

Jay Phelps | @_jayphelps

Why a stack machine?
instead of AST, SSA, or register machine

Jay Phelps | @_jayphelps

Smaller binary encoding, easier and faster
single pass verification and VM implementation

1 + 2

i32.add 0x6a

opcode mnemonics

01101010

i32.const 1
i32.const 2
i32.add

stack

i32.const 1
i32.const 2
i32.add

i32.const 1
i32.const 2
i32.add

i32.const 1

stack

1

i32.const 1
i32.const 2
i32.add

i32.const 1

stack

1

i32.const 1
i32.const 2
i32.add
i32.const 2

stack

2

1

i32.const 1
i32.const 2
i32.add
i32.const 2

stack

2

1

i32.const 1
i32.const 2
i32.addi32.add

stack

1

2

i32.const 1
i32.const 2
i32.addi32.add

stack

1

2

i32.const 1
i32.const 2
i32.addi32.add

stack

3

i32.const 1
i32.const 2
i32.addi32.add

stack

3

i32.const 1
i32.const 2
i32.add

Jay Phelps | @_jayphelps

i32.const 1
i32.const 2
i32.add
call $log

Jay Phelps | @_jayphelps

Jay Phelps | @_jayphelps

What's missing?

Jay Phelps | @_jayphelps

Direct access to Host APIs (e.g. the DOM)
no direct access to sys calls, you have to call into JavaScript

Jay Phelps | @_jayphelps

Garbage collection
necessary for better interop with JavaScript

and WebIDL (e.g. the DOM)

Jay Phelps | @_jayphelps

Multi-threading
SharedArrayBuffer re-enabled in Chrome 68

Jay Phelps | @_jayphelps

Single Instruction Multiple Data (SIMD)
Hardware parallelization of vector computations

Jay Phelps | @_jayphelps

Zero-cost exceptions
someday maybe even Algebraic Effects (!!!)

Jay Phelps | @_jayphelps

There's more, but advancing quickly!

Jay Phelps | @_jayphelps

How do I get started?

Jay Phelps | @_jayphelps

webassembly.org

Jay Phelps | @_jayphelps

https://github.com/mbasso/awesome-wasm

Supported in all modern browsers

Jay Phelps | @_jayphelps

The revolution is just beginning

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Web?

Jay Phelps | @_jayphelps

The first open and standardized bytecode

Jay Phelps | @_jayphelps

WebAssembly is not just for the Web!

ewasm
Etherium-flavored WebAssembly VM for

running distributed smart contracts

rianhunter/wasmjit
VM and Linux kernel module for

running WebAssembly in “ring 0”

nebulet
microkernel that runs WebAssembly exclusively

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Web

Jay Phelps | @_jayphelps

Thanks!

 @_jayphelps

