WebAssembly

neither Web nor Assembly, but Revolutionary

Jay Phelps | @_jayphelps

The WebAssembly revolution has begun

Jay Phelps | @_jayphelps

Jay Phelps
Chief Software Architect

previously

@_jayphelps

THIS D@T

THIS D@T

Support, Dev Rel, Staff Augmentation, Mentorship, and more

WwWw.thisdot.co

So..what is WebAssembly? aka Wasm

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the \Web

Jay Phelps | @_jayphelps

Efficient

Jay Phelps | @_jayphelps

~ast to load and execute

Jay Phelps | @_jayphelps

Streaming compilation
compiled to machine code faster than it downloads

Jay Phelps | @_jayphelps

$1 (type 0)
const 0O
load

$2 (type 0)
const 0O
load

(func $3 (type 0)
i32.const O
i32.load

wasm machine code

$1 (type
.const O
.load

$2 (type
.const O
.load

$3 (type
.const O
.load

wasm machine code

$1 (type
.const O
.load

$2 (type
.const O
.load

$3 (type
.const O
.load

Efficient, safe, low-level bytecode for the \Web

Sandboxed and designed with security in mind

Control-flow integrity checks, stack protection,
dynamic dispatch table separate from linear memory

Jay Phelps | @_jayphelps

However, does not prevent all classes of exploits

Code reuse, side channel, race conditions, etc

Jay Phelps | @_jayphelps

low-level bytecode

Jay Phelps | @_jayphelps

WebAssembly is a portable, binary
Instruction set for a virtual machine

Jay Phelps | @_jayphelps

0) (Y

01101010

(the i32.add instruction)

Jay Phelps | @_jayphelps

Intended (mostly) as a compilation target

Jay Phelps | @_jayphelps

int factorial(int n) {
if (n == 0) {
return 1;

} else {
return n * factorial(n - 1);

}
}

int factorial(int n) {

it (n ==
return
} else {
return

Y —_

n * factorial(n - 1);

00
86
01
00
9D
80
40
6B

61
80
/F
06
80
00
41
10

/3
80
03
81
80
00
01
00

6D
80
82
80
80
20
OF
20

01
00
80
80
00
00
OB
00

00
01
80
80
01
41
20
6C

00
60
80
00
97
00
00
OB

00
01
00
00
80
46
41

01
/F
01
OA
80
04
01

Efficient, safe, low-level bytecode for the \Web

Jay Phelps | @_jayphelps

How did we get here?

Jay Phelps | @_jayphelps

Primary goals:
languages other than JavaScript and
great—ideally improved—performance

Jay Phelps | @_jayphelps

Java Applets

Never truly integrated into browsers

Jay Phelps | @_jayphelps

Why not integrate the JVM or CLR?

misaligned goals, mostly related to validation/compiling

Jay Phelps | @_jayphelps

Portable Native Client (PNaCl)
lead by Google

Jay Phelps | @_jayphelps

asm.js
lead by Mozilla

Jay Phelps | @_jayphelps

C asm.Js

"use asm”
size t strlen(char *ptr) { function strlen(ptr) {
char *curr = ptr; ptr = ptr|o;
while (*curr != 0) { var curr = 0;
curr++; ~ ___-> curr = ptr;
} while (MEM8[curr]|o != 0) {
return (curr - ptr); curr = (curr + 1)|0;
} }

return (curr - ptr)|o;

}

, WebAssembly |

Jay Phelps | @_jayphelps

WebAssembly is an unprecedented collaboration

Jay Phelps | @_jayphelps

The first open and standardized bytecode

Jay Phelps | @_jayphelps

s it going to kill JavaScript’

Jay Phelps| = @_jayphelps

s it going to kill JavaScript’

Jay Phelps| = @_jayphelps

Nope!

Jay Phelps | @_jayphelps

Will we compile JavaScript to WebAssembly’

Jay Phelps | @_jayphelps

JavaScript is an extremely dynamic language

Jay Phelps | @_jayphelps

—+.2 Brandon Dail :
A Following v
=

@aweary

Q you can push into Array.prototype and
totally mess up empty arrays

Array.prototype.push("lol")
1

var empty = [];

undefined
empty[0]
il 'LO'LII

Fully spec compliant JavaScript compiled
to WebAssembly would be slower

Jay Phelps | @_jayphelps

...but a strict subset of JavaScript could be fast!

Jay Phelps | @_jayphelps

Sebastian Markbage

Following
@sebmarkbage

O

Replying to

What if you could AOT compile JS to native
machine code and WebAssembly without a

runtime or GC? @

6:31 PM - 24 Jul 2018

21 Retweets 144 Likes @ @ 9 B ';:q :é- ﬁ @ ““

2 Prepack GETTING STARTED FAQS TRY ITOUT GITHUB

Prepack

A tool for making JavaScript code run faster.

*Prepack is still in an early development stage and not ready for
poroduction use just yet. Please try it out, give feedback, and help fix
bugs.

What does it do?

Prepack is a tool that optimizes JavaScript source code: Computations that can be done at compile-time instead of run-time get
eliminated. Prepack replaces the global code of a JavaScript bundle with equivalent code that is a simple sequence of assignments.
This gets rid of most intermediate computations and object allocations.

WebAssembly vl MVP is best suited for
languages like C/C++ and Rust

Jay Phelps | @_jayphelps

|[deal for relatively low-level, system languages

Very little dynamic features at run-time, no GC

Jay Phelps | @_jayphelps

Some modern features of C++
don’t perform ideal

Jay Phelps | @_jayphelps

Exceptions are the most common example

Jay Phelps | @_jayphelps

But other languages are already
supported, and more planned

Things like Go, .NET, Java, OCaml, and even new ones

Jay Phelps | @_jayphelps

WebAssembly will impact language
design and implementation

Jay Phelps | @_jayphelps

The Web requires unique considerations

Jay Phelps | @_jayphelps

Rust team has specifically called out
WebAssembly as a priority

Jay Phelps | @_jayphelps

File sizes

as well as lazy-loading/code splitting, caching, etc

Jay Phelps | @_jayphelps

Shared libraries

Traditional platforms like iIOS/Android/macQS/
Windows have more robust stdlibs and Ul toolkits

Jay Phelps | @_jayphelps

Offline

Caching story much more complex than desktop

Jay Phelps | @_jayphelps

Interop with JavaScript

Languages which better interop with JS have major advantage

Jay Phelps | @_jayphelps

Promising: Dart, Elm, Reason
Languages designed for the Web

Jay Phelps | @_jayphelps

a TypeScript-like language’

AssemblyScript Is an early example

Jay Phelps | @_jayphelps

AssemblyScript

export function factorial(n: i32): 132 {
if (n == 0)
return 1;

} else {
return n * factorial(n - 1);

}
}

Jay Phelps | ¥ @_jayphelps

When should | target WebAssembly right now?

Jay Phelps | @_jayphelps

Heavily CPU-bound number computations

Jay Phelps | @_jayphelps

Games
both Unity and Unreal Engine offer support

Jay Phelps | @_jayphelps

Using existing portable code

e.g. video/audio decoders and other processing

Jay Phelps | @_jayphelps

RLWE
hunspell McEliece

mcl Zopfli
ttf2woff2

bcrypt web-dsp

OpenCV
SIDH bl SPHINCS

XSalsa20

xxXHash GDAL NTRU

Jay Phelps | @_jayphelps

Zoom for Web client

Video conferencing powered by WebAssembly,
video/audio decoding off the main threaad

Jay Phelps | @_jayphelps

react-native-dom

(not react-native-web)

React Native DOM -

An experimental, comprehensive port of React Native to the web.

Multithreaded by default: Following the exact same architecture as React Native on mobile, all of your react
components/app logic are run in web worker, leaving the main thread to entirely focus on rendering.

Same layout behavior as React Native on mobile: Powered by custom bindings to Yoga and compiled to Web Assembly,
avoid layout inconsistencies between your native and web projects.

Built with the same bundler used for existing React Native platforms: Build both the "native" main and JS threads with the
Metro Bundler along with all the developer experience features it provides.

Ecosystem compatible escape hatch to the DOM: Using the same native module bridge, expose DOM-specific APIs in a
more generic way that can easily be made into a cross-platform module.

To see it in action, check out these live demos:

e Movies Demo

Web Ul developers are probably already using
WebAssembly without knowing it!

Jay Phelps | @_jayphelps

source-map npm package

used by Firefox, Babel, create-react-app, LESS, etc

You , a\

HACKS

By Nick Fitzgerald

Oxidizing Source Maps with Rust and 1 0 9
WebAssembl
. . 7 x faster!

Edit: Further algorithmic improvements yielded additional speedups over what
is described here, for total speedups of up to 10.9x faster than the original
implementation. Read about these extra gains in Speed Without Wizardry!

Tom Tromey and | have replaced the most performance-sensitive portions of
the source-map JavaScript Library’s source map parser with Rust code that is
compiled to WebAssembly. The WebAssembly is up to 5.89 times faster than
the JavaScript implementation on realistic benchmarks operating on real world
source maps. Additionally, performance is also more consistent: relative

standard deviations decreased. Jay Phelps | @_jayphEIPS

Other use cases are just around the corner

Jay Phelps | @_jayphelps

What was that binary stuff?

Jay Phelps | @_jayphelps

int factorial(int n) {

it (n ==
return
} else {
return

Y —_

n * factorial(n - 1);

00
86
01
00
9D
80
40
6B

61
80
/F
06
80
00
41
10

/3
80
03
81
80
00
01
00

6D
80
82
80
80
20
OF
20

01
00
80
80
00
00
OB
00

00
01
80
80
01
41
20
6C

00
60
80
00
97
00
00
OB

00
01
00
00
80
46
41

01
/F
01
OA
80
04
01

00
86
01
00
9D
80
40
6B

61
80
/F
06
80
00
41
10

/3
80
03
81
80
00
01
00

6D
80
82
80
80
20
OF
20

01
00
80
80
00
00
OB
00

00
01
80
80
01
41
20
6C

00
60
80
00
97
00
00
OB

00
01
00
00
80
46
41

01
/F
01
OA
80
04
01

1%
86
01
00O
9D
80
40
6B

61
80
/F
06
80
0o
41
10

/3
80
03
81
80
1%
01
00O

6D
80
82
80
80
20
OF
20

01
00
80
80
1%
00

0o
01
80
80
01
41

915
60
80
00O
97
00O

OB 20 00

00

6C

OB

0o
01
0o
0O
80
46
41

01
/F
01
OA
80
04
01

00
86
01
00
9D
80

6B

00 01
01 7F

61 73 6D 01 00 00
80 80 80 00 91 60
/7F 063 82 80 80 80 00 091
06 81 80 80 80 00 00 OA
80 80 80 00 901 97 80 80
00 00 20 00 41 90 46 04

49 41 91 OF OB 20 00 41 01

10 060 20 00

6C OB

03 82 80 80 80
81 80 80 80 00
80 89 00 91 9/
00 20 00 41 00

Binary can be a little intimidating

Jay Phelps | @_jayphelps

Protip: don't worry about it
(unless of course, you want to)

Jay Phelps | @_jayphelps

Tooling will eventually make it a non-issue

Jay Phelps | @_jayphelps

Textual representation to the rescue!

Jay Phelps | @_jayphelps

(func $factorial (param $n i32) (result i32)
get local $n
132.const O
132.ed
if $ifo
132.const 1
return
end $if0
get local $n
132.const 1
132.sub
call $factorial
get local $n
132.mul

Jay Phelps | ¥ @_jayphelps

Jay Phelps | ¥ @_jayphelps

| et's learn the fundamentals

Jay Phelps | @_jayphelps

WebAssembly is a stack machine

Jay Phelps | @_jayphelps

..Wwhat's a stack machine?

Jay Phelps | @_jayphelps

Stack

a data structure with two operations:

push and pop

Jay Phelps | @_jayphelps

stack machine: instructions on a stack

Jay Phelps | @_jayphelps

Why a stack machine?
instead of AST, SSA, or register machine

Jay Phelps | @_jayphelps

Smaller binary encoding, easier and faster
single pass verification and VM implementation

Jay Phelps | @_jayphelps

opcode mMNemonics

132.add — ©OXx6a

01101010

132.const
132.const
132.add

132.const
132.const
132.add

132.const

132.const

132.const

132.const

132.add

132.add

132.add

132.add

132.const

132.const
132.add

Jay Phelps | @_jayphelps

132.const

132.const
132.add
call $log

Jay Phelps | @_jayphelps

What's missing?

Jay Phelps | @_jayphelps

Direct access to Host APlIs (e.g. the DOM)

NO direct access to sys calls, you have to call into JavasScript

Jay Phelps | @_jayphelps

Garbage collection

necessary for better interop with JavaScript
and WebIDL (e.g. the DOM)

Jay Phelps | @_jayphelps

Multi-threading

SharedArrayBuffer re-enabled in Chrome 63

Jay Phelps | @_jayphelps

Single Instruction Multiple Data (SIMD)

ardware parallelization of vector computations

Jay Phelps | @_jayphelps

Zero-cost exceptions

someday maybe even Algebraic Effects (!!!)

Jay Phelps | @_jayphelps

There's more, but advancing quickly!

Jay Phelps | @_jayphelps

How do | get started?

Jay Phelps | @_jayphelps

webassembly.org

Jay Phelps | @_jayphelps

https://github.com/mbasso/awesome-wasm

Awesome Wasm “5)| awesome

Collection of awesome things regarding WebAssembly (wasm) ecosystem.

Please read the contribution guidelines if you want to contribute.

Contents

General Resources
Online Playground
Tutorials

Compilers

Non-Web Embeddings

Projects
o Web frameworks-libraries

o Data processing

o WebGL
webpack
Browserify
Languages

o node.js

o QOthers

e Tools

ay Phelps | @_jayphelps

Supported in all modern browsers

Usage
Global 76.85%

—dge g -irefox Chrome Safari |OS Safari g

49
03
o/

11.2

62 12 11.4

The revolution is just beginning

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode for the Web

Jay Phelps | @_jayphelps

for the Web?

Jay Phelps | @_jayphelps

The first open and standardized bytecode

Jay Phelps | @_jayphelps

N
(4]
[

a

v
-
O

2

5

L

O

2

TABLE OF CONTENTS

1

1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2

2
2.1

2.1.1
2.1.2
2.1.3
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.3

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

—\o3p

Introduction
Introduction
Design Goals
Scope
Dependencies
Overview
Concepts
Semantic Phases

Structure
Conventions

Grammar Notation
Auxiliary Notation
Vectors

Values
Bytes
Integers
Floating-Point
Names

Types
Value Types
Result Types
Function Types
Limits
Memory Types
Table Tvpes

WebAssembly Core Specification W3

Editor’s Draft, 8 August 2018

This version:
https://webassembly.github.io/spec/core/bikeshed/

Latest published version:
https://www.w3.org/TR/wasm-core-1/

Editor:
Andreas Rossberg (Dfinity Stiftung)

Issue Tracking:
GitHub Issues

Copyright © 2018 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules apply.

Abstract

This document describes version 1.0 of the core WebAssembly standard, a safe, portable, low-level code
mat designed for efficient execution and compact representation.

Part of a collection of related documents: the Core WebAssembly Specification, the WebAssembly JS Inte
face, and the WebAssembly Web API.

Status of this document

o Platform-independent: can be embedded in browsers, run as a

stand-alone VM, or integrated in other environments.

WebAssembly is not just for the Web!

Jay Phelps | @_jayphelps

JF Bastien
@jfbastien

(>

WebAssembly: neither Web nor Assembly.

9:53 AM - 30 Jun 2017

O Retweets 75 Likes

@Y & i3 ¢

ewasim

Etherium-flavored WebAssembly VM for
running distributed smart contracts

$ cat selfpipe.c
#include <stdio.h>
#include <unistd.h>

char buf[4096];

int main(int argc, char *argv([])
{
int pipes[2], ret;
size t 1;

ret = pipe(pipes);

if (ret) {
perror("pipe");
return -1;

}

for (1 = 0; 1 < 16ULL * 1024ULL * 1024ULL * 1024 / 4096; ++1) {
ret = write(pipes[l], buf, sizeof(buf));
if (ret < 0) {
perror(“write");
return -1;

¥

ret = read(pipes[0], buf, sizeof(buf));
if (ret < 0) {

perror("read");

}
}

return O;
}
$ cc -03 -0 selfpipe selfpipe.c
$ time ./selfpipe

real Om4. 496s

user OmO. 948s

Sys Om3.546s

$ emcc -03 -0 selfpipe.js selfpipe.c
$ time ./wasmjit selfpipe.wasnm

real Om2.025s
user OmQ. 004s
Sys Om2.019s

$ |

Google
Summer of Code

nebulet

microkernel that runs WebAssembly exclusively

Efficient, safe, low-level bytecode for the \Web

Jay Phelps | @_jayphelps

Efficient, safe, low-level bytecode forthe\Aleb

Jay Phelps | @_jayphelps

Thanks!

@ Jayphelps

