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So...what is WebAssembly? aka Wasm
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Efficient, safe, low-level bytecode for the Web
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Efficient, safe, low-level bytecode for the Web
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Fast to load and execute
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Streaming compilation
 compiled to machine code faster than it downloads







(func $0 (type 0) 
  i32.const 0 
  i32.load 
)

(func $1 (type 0) 
  i32.const 0 
  i32.load 
)

(func $2 (type 0) 
  i32.const 0 
  i32.load 
)

(func $3 (type 0) 
  i32.const 0 
  i32.load 
)
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wasm-function[0]: 
  sub rsp, 8 
  mov eax, dword ptr [r15] 
  nop 
  add rsp, 8 

wasm-function[1]: 
  sub rsp, 8 
  mov eax, dword ptr [r15] 
  nop 
  add rsp, 8 

wasm-function[2]: 
  sub rsp, 8 
  mov eax, dword ptr [r15] 
  nop 
  add rsp, 8 

wasm-function[3]: 
  sub rsp, 8 
  mov eax, dword ptr [r15] 
  nop 
  add rsp, 8 

.wasm machine code
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Efficient, safe, low-level bytecode for the Websafe
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Sandboxed and designed with security in mind

Control-flow integrity checks, stack protection, 
dynamic dispatch table separate from linear memory
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However, does not prevent all classes of exploits
Code reuse, side channel, race conditions, etc
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Efficient, safe, low-level bytecode for the Weblow-level bytecode
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WebAssembly is a portable, binary 
instruction set for a virtual machine
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0x6a
01101010

(the i32.add instruction)
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Intended (mostly) as a compilation target



int factorial(int n) { 
  if (n == 0) { 
    return 1; 
  } else { 
    return n * factorial(n - 1); 
  } 
}



int factorial(int n) { 
  if (n == 0) { 
    return 1; 
  } else { 
    return n * factorial(n - 1); 
  } 
}

00 61 73 6D 01 00 00 00 01 
86 80 80 80 00 01 60 01 7F 
01 7F 03 82 80 80 80 00 01 
00 06 81 80 80 80 00 00 0A 
9D 80 80 80 00 01 97 80 80 
80 00 00 20 00 41 00 46 04 
40 41 01 0F 0B 20 00 41 01 
6B 10 00 20 00 6C 0B
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Efficient, safe, low-level bytecode for the Web
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How did we get here?
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Primary goals: 
languages other than JavaScript and 

great—ideally improved—performance
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Java Applets
Never truly integrated into browsers
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Why not integrate the JVM or CLR?
misaligned goals, mostly related to validation/compiling
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Portable Native Client (PNaCl)
lead by Google
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asm.js
lead by Mozilla



size_t strlen(char *ptr) { 
  char *curr = ptr; 
  while (*curr != 0) { 
    curr++; 
  } 
  return (curr - ptr); 
}

"use asm" 
function strlen(ptr) { 
  ptr = ptr|0; 
  var curr = 0; 
  curr = ptr; 
  while (MEM8[curr]|0 != 0) { 
    curr = (curr + 1)|0; 
  } 
  return (curr - ptr)|0; 
}

asm.jsC



!
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WebAssembly !
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WebAssembly is an unprecedented collaboration
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The first open and standardized bytecode
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Is it going to kill JavaScript?
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Is it going to kill JavaScript?
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Nope!
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Will we compile JavaScript to WebAssembly?
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JavaScript is an extremely dynamic language
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Fully spec compliant JavaScript compiled 
to WebAssembly would be slower
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…but a strict subset of JavaScript could be fast!
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WebAssembly v1 MVP is best suited for 
languages like C/C++ and Rust
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Ideal for relatively low-level, system languages
Very little dynamic features at run-time, no GC



Jay Phelps |         @_jayphelps

Some modern features of C++ 
don’t perform ideal
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Exceptions are the most common example
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But other languages are already 
supported, and more planned
Things like Go, .NET, Java, OCaml, and even new ones
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WebAssembly will impact language 
design and implementation
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The Web requires unique considerations



Jay Phelps |         @_jayphelps

Rust team has specifically called out 
WebAssembly as a priority



Jay Phelps |         @_jayphelps

File sizes
as well as lazy-loading/code splitting, caching, etc
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Shared libraries
Traditional platforms like iOS/Android/macOS/

Windows have more robust stdlibs and UI toolkits



Jay Phelps |         @_jayphelps

Offline
Caching story much more complex than desktop
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Interop with JavaScript
Languages which better interop with JS have major advantage
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Promising: Dart, Elm, Reason
Languages designed for the Web
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a TypeScript-like language?
AssemblyScript is an early example
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export function factorial(n: i32): i32 { 
  if (n == 0) { 
    return 1; 
  } else { 
    return n * factorial(n - 1); 
  } 
}

AssemblyScript



Jay Phelps |         @_jayphelps

When should I target WebAssembly right now?



Jay Phelps |         @_jayphelps

Heavily CPU-bound number computations
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Games
both Unity and Unreal Engine offer support 
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Using existing portable code
e.g. video/audio decoders and other processing
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bcrypt

OpenCV

mcl

bls

web-dsp

hunspell

XSalsa20
GDAL

SPHINCS

NTRUxxHash

RLWE
McEliece

Zopfli

SIDH

ttf2woff2



Jay Phelps |         @_jayphelps

Zoom for Web client
Video conferencing powered by WebAssembly, 

video/audio decoding off the main thread



react-native-dom
(not react-native-web)
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Web UI developers are probably already using 
WebAssembly without knowing it!



Jay Phelps |         @_jayphelps

source-map npm package

10.9x  faster!

used by Firefox, Babel, create-react-app, LESS, etc
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Other use cases are just around the corner
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What was that binary stuff?
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  if (n == 0) { 
    return 1; 
  } else { 
    return n * factorial(n - 1); 
  } 
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Binary can be a little intimidating
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Protip: don't worry about it
(unless of course, you want to)
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Tooling will eventually make it a non-issue
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Textual representation to the rescue!
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(func $factorial (param $n i32) (result i32) 
  get_local $n 
  i32.const 0 
  i32.eq 
  if $if0 
  i32.const 1 
  return 
  end $if0 
  get_local $n 
  i32.const 1 
  i32.sub 
  call $factorial 
  get_local $n 
  i32.mul 
)
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(func $factorial (param $n i32) (result i32) 
  get_local $n 
  i32.const 0 
  i32.eq 
  if $if0 
  i32.const 1 
  return 
  end $if0 
  get_local $n 
  i32.const 1 
  i32.sub 
  call $factorial 
  get_local $n 
  i32.mul 
)
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Let's learn the fundamentals
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WebAssembly is a stack machine
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...what's a stack machine?



Jay Phelps |         @_jayphelps

a data structure with two operations:  

push and pop

Stack
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stack machine: instructions on a stack
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Why a stack machine?
instead of AST, SSA, or register machine
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Smaller binary encoding, easier and faster 
single pass verification and VM implementation



1 + 2



i32.add 0x6a

opcode mnemonics

01101010



i32.const 1 
i32.const 2 
i32.add
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i32.const 1 
i32.const 2 
i32.add 
call $log 
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What's missing?
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Direct access to Host APIs (e.g. the DOM)
no direct access to sys calls, you have to call into JavaScript
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Garbage collection
necessary for better interop with JavaScript 

and WebIDL (e.g. the DOM)
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Multi-threading
SharedArrayBuffer re-enabled in Chrome 68
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Single Instruction Multiple Data (SIMD)
Hardware parallelization of vector computations
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Zero-cost exceptions
someday maybe even Algebraic Effects (!!!)
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There's more, but advancing quickly!
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How do I get started?
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webassembly.org
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https://github.com/mbasso/awesome-wasm



Supported in all modern browsers
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The revolution is just beginning
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Efficient, safe, low-level bytecode for the Web
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Efficient, safe, low-level bytecode for the Web?
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The first open and standardized bytecode
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WebAssembly is not just for the Web!





ewasm
Etherium-flavored WebAssembly VM for 

running distributed smart contracts



rianhunter/wasmjit
VM and Linux kernel module for 

running WebAssembly in “ring 0”



nebulet
microkernel that runs WebAssembly exclusively
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Efficient, safe, low-level bytecode for the Web
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Efficient, safe, low-level bytecode for the Web
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Thanks!

       @_jayphelps


