Workshop: [SOLD OUT] (Deep) Learn You a Neural Net For Great Good!
You (yes you!) can build your own NN from scratch using the tools you already know.
Neural networks and deep learning are fundamental to modern machine learning, yet often appear scarier than they really are. Many users of Scikit-learn et al. can apply ML techniques (perhaps including deep learning) through these tools, but do not always grok fully what happens beneath the surface. Other more engineering-oriented practitioners are put off entirely by the seeming complexity of DL.
We walk through a live coding practicum (in a Jupyter Notebook) in which we implement a feed-forward, fully-connected neural net in numpy, initially training it via a for-loop to demonstrate core concepts, and finally codifying the NN as a Scikit-learn style classifier with which one can fit & predict on one’s own data. We make iterative improvements to code quality along the way, and reach a level of abstraction suitable for reusable, modular machine learning.
The focus of this talk is on the practicum of implementing one’s own NN algorithm, though we also review the most important mathematical and theoretical components of NNs to ground the practicum for attendees. Mathematical review touches on the nature of gradients, what they are, how they relate to derivates, and how backpropagation works at a high level. Attendees will leave the talk with a better understanding of deep learning through iterative optimization.
Other Workshops:
Tracks
Monday, 5 November
-
Microservices / Serverless Patterns & Practices
Evolving, observing, persisting, and building modern microservices
-
Practices of DevOps & Lean Thinking
Practical approaches using DevOps & Lean Thinking
-
JavaScript & Web Tech
Beyond JavaScript in the Browser. Exploring WebAssembly, Electron, & Modern Frameworks
-
Modern CS in the Real World
Thoughts pushing software forward, including consensus, CRDT's, formal methods, & probabilistic programming
-
Modern Operating Systems
Applied, practical, & real-world deep-dive into industry adoption of OS, containers and virtualization, including Linux on Windows, LinuxKit, and Unikernels
-
Optimizing You: Human Skills for Individuals
Better teams start with a better self. Learn practical skills for IC
Tuesday, 6 November
-
Architectures You've Always Wondered About
Next-gen architectures from the most admired companies in software, such as Netflix, Google, Facebook, Twitter, & more
-
21st Century Languages
Lessons learned from languages like Rust, Go-lang, Swift, Kotlin, and more.
-
Emerging Trends in Data Engineering
Showcasing DataEng tech and highlighting the strengths of each in real-world applications.
-
Bare Knuckle Performance
Killing latency and getting the most out of your hardware
-
Socially Conscious Software
Building socially responsible software that protects users privacy & safety
-
Delivering on the Promise of Containers
Runtime containers, libraries, and services that power microservices
Wednesday, 7 November
-
Applied AI & Machine Learning
Applied machine learning lessons for SWEs, including tech around TensorFlow, TPUs, Keras, PyTorch, & more
-
Production Readiness: Building Resilient Systems
More than just building software, building deployable production ready software
-
Developer Experience: Level up your Engineering Effectiveness
Improving the end to end developer experience - design, dev, test, deploy, operate/understand.
-
Security: Lessons Attacking & Defending
Security from the defender's AND the attacker's point of view
-
Future of Human Computer Interaction
IoT, voice, mobile: Interfaces pushing the boundary of what we consider to be the interface
-
Enterprise Languages
Workhorse languages found in modern enterprises. Expect Java, .NET, & Node in this track