QCon Munich 2020 has been canceled. See our current virtual and in-person events.

You are viewing content from a past/completed QCon -

Presentation: From POC to Production in Minimal Time - Avoiding Pain in ML Projects

Track: Machine Learning for Developers

Location: Ballroom A

Duration: 1:40pm - 2:30pm

Day of week: Wednesday

Slides: Download Slides

This presentation is now available to view on InfoQ.com

Watch video with transcript


“So how soon can this go live?” It can be a chilling question because you know that whatever answer you give, there’ll be a business need to get delivered sooner and with fewer resources than you need.  Turning an AI proof of concept into a production ready, deployable system can be a world of pain, especially if different parts of the puzzle are fulfilled by different teams. When promised data doesn’t appear and timelines and scope creeps what can you do?

I’ll talk you through one such project: from the initial pitch and how that changed to the agreed project deliverables, the first AI model and a very clunky web demo, dealing with the extensive missing data and creating an automation pipeline to deal with it, getting a tensorflow based image classifier working in docker with a slick front end and continuously updating and deploying itself using codeship and AWS fargate. For each step, I’ll go into the technical detail so that whichever part of this puzzle you’re missing, you will be able to fill in the gaps and put something similar together yourself.

Key takeaways:

  • Setting up a data pipeline so that you can feed your models
  • Creating an api accessible ML model
  • Docker with GPUs and if you need it
  • Adding a demo suitable for clients not data scientists
  • Making production quality ML

How to put everything together and set up a continuous delivery pipeline for MLs models using docker, or staged deliveries using AWS fargate.

Speaker: Janet Bastiman

Chief Science Officer @StoryStreamAI

Janet Bastiman is Chief Science Officer for Storystream where she heads up the AI strategy and also gets her hands dirty in the code with her team.  She is also a Venture Partner at London based venture capital company MMC Ventures providing research and analysis on AI topics as well as advising portfolio companies on AI strategy. MMC have recently released the AI playbook to advise businesses on how to be successful with AI projects based on Janet's experiences.  She is treasurer of the IEEE UK STEM committee and is passionate about democratising AI and lifelong learning.

In addition to squeezing in a maths degree, her spare time is filled with Lego builds, theme parks, and gaming.     

Find Janet Bastiman at

Last Year's Tracks

  • Monday, 16 November

  • Non-Technical Skills for Technical Folks

    To be an effective engineer, requires more than great coding skills. Learn the subtle arts of the tech lead, including empathy, communication, and organization.

  • Clientside: From WASM to Browser Applications

    Dive into some of the technologies that can be leveraged to ultimately deliver a more impactful interaction between the user and client.

  • Languages of Infra

    More than just Infrastructure as a Service, today we have libraries, languages, and platforms that help us define our infra. Languages of Infra explore languages and libraries being used today to build modern cloud native architectures.

  • Mechanical Sympathy: The Software/Hardware Divide

    Understanding the Hardware Makes You a Better Developer

  • Paths to Production: Deployment Pipelines as a Competitive Advantage

    Deployment pipelines allow us to push to production at ever increasing volume. Paths to production looks at how some of software's most well known shops continuous deliver code.

  • Java, The Platform

    Mobile, Micro, Modular: The platform continues to evolve and change. Discover how the platform continues to drive us forward.

  • Tuesday, 17 November

  • Security for Engineers

    How to build secure, yet usable, systems from the engineer's perspective.

  • Modern Data Engineering

    The innovations necessary to build towards a fully automated decentralized data warehouse.

  • Machine Learning for the Software Engineer

    AI and machine learning are more approachable than ever. Discover how ML, deep learning, and other modern approaches are being used in practice by Software Engineers.

  • Inclusion & Diversity in Tech

    The road map to an inclusive and diverse tech organization. *Diversity & Inclusion defined as the inclusion of all individuals in an within tech, regardless of gender, religion, ethnicity, race, age, sexual orientation, and physical or mental fitness.

  • Architectures You've Always Wondered About

    How do they do it? In QCon's marquee Architectures track, we learn what it takes to operate at large scale from well-known names in our industry. You will take away hard-earned architectural lessons on scalability, reliability, throughput, and performance.

  • Architecting for Confidence: Building Resilient Systems

    Your system will fail. Build systems with the confidence to know when they do and you won’t.

  • Wednesday, 18 November

  • Remotely Productive: Remote Teams & Software

    More and more companies are moving to remote work. How do you build, work on, and lead teams remotely?

  • Operating Microservices

    Building and operating distributed systems is hard, and microservices are no different. Learn strategies for not just building a service but operating them at scale.

  • Distributed Systems for Developers

    Computer science in practice. An applied track that fuses together the human side of computer science with the technical choices that are made along the way

  • The Future of APIs

    Web-based API continue to evolve. The track provides the what, how, and why of future APIs, including GraphQL, Backend for Frontend, gRPC, & ReST

  • Resurgence of Functional Programming

    What was once a paradigm shift in how we thought of programming languages is now main stream in nearly all modern languages. Hear how software shops are infusing concepts like pure functions and immutablity into their architectures and design choices.

  • Social Responsibility: Implications of Building Modern Software

    Software has an ever increasing impact on individuals and society. Understanding these implications helps build software that works for all users