Presentation: Unified Big Data Processing with Apache Spark

While early big data systems, such as MapReduce, focused on batch processing, the demands on these systems have quickly grown. Users quickly needed to run (1) more interactive ad-hoc queries, (2) sophisticated multi-pass algorithms (e.g. machine learning), and (3) real-time stream processing. The result has been an explosion of specialized systems to tackle these new workloads. Unfortunately, this means more systems to learn, manage, and stitch together into pipelines. Spark is unique in taking a step back and trying to provide a *unified* post-MapReduce programming model that tackles all these workloads. By generalizing MapReduce to support fast data sharing and low-latency jobs, we achieve best-in-class performance in a variety of workloads, while providing a simple programming model that lets users easily and efficiently combine them.

Today, Spark is the most active open source project in big data, with high activity in both the core engine and a growing array of standard libraries built on top (e.g. machine learning, stream processing, SQL). I'm going to talk about the latest developments in Spark and show examples of how it can combine processing algorithms to build rich data pipelines in just a few lines of code.

Matei Zaharia Elsewhere

Tracks

Covering innovative topics

Monday, 3 November

Tuesday, 4 November

Wednesday, 5 November

Conference for Professional Software Developers